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Chapter 1: Introduction  

This study investigates the possibility of implementing an external logic processor for real-time 

signalized intersection performance measurement and control feedback of multiple intersections 

in a traffic network. Using an external processor facilitates traffic control strategy research 

addressing special operational circumstances such as queue spillback. Typically, newer model 

traffic controllers have Ethernet connectivity and support data exchange using the National 

Transportation Communications for ITS Protocol (NTCIP) 1202 communication protocol to 

form an Ethernet based communication network of multiple traffic controllers. The architecture 

can be implemented to resolve various operational problems; however, in this research, the focus 

was to apply it in addressing the queue spillback problem. In this chapter, Section 1.1 provides a 

brief overview that explains the rationale of the proposed research direction. Examples of 

relevant research concepts are provided in Section 1.2, the state of current queue spillback 

methods are explained in Section 1.3, and a summary of the problem statement is provided in 

Section 1.4. The chapter concludes by summarizing the research objectives in Section 1.5. 

1.1  Research Overview 

Growing travel demand and limited capacity make efficient intersection operations difficult to 

maintain. Traffic control devices are used to ensure efficient operations by allocating “green 

time” (the duration of time when vehicles are allowed to move through the signalized 

intersection) among different traffic movements based on their demands. However, the demand 

scenario changes during the day and also during different times of the year. Therefore, an 

effective traffic control system needs to be demand responsive. An actuated traffic control 

system detects the traffic and responds by allocating the green accordingly so that the green 

times are used effectively rather than being “unused and wasted” (the portion of green time when 

there is no vehicle served). The controller, in an actuated system, serves a certain phase if it 

receives a call from any of the detectors associated with that phase and terminates the service 

once demand goes down, or there is a call for service at another conflicting phase. This demand 

responsiveness of modern traffic controllers makes the operation more efficient. Furthermore, in 

addition to the most frequently used traffic controller functions, some controllers have special 

functions to add more options and flexibility in programming simple control logic, e.g., the 

Econolite ASC/3 Controller has a built-in “Logic Processor.” However, this logic processor can 
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only be programmed with very simple instructions. At this point, complex logic and program 

instructions required to address special traffic scenarios, such as queue spillback, introduces the 

need for using an external logic processor. While the traffic controller regulates the intersection 

operation, this external processor can monitor the performance and look for operational issues by 

collecting and processing data from the controller.  

Additionally, for a traffic network of multiple intersections, the signal state and detector state 

data from other intersections downstream or upstream to the subject intersection are necessary to 

make a control algorithm for queue spillback scenarios. This data cannot be processed by the 

traffic controller itself. The implementation of an external logic processor can make the data 

processing and performance monitoring possible for multiple traffic controllers if these are 

connected to a common network. For this research, the collected data were analyzed to make 

decisions for queue spillback situations. A previously developed research methodology by 

Ahmed (2009) attempted to address this problem by communicating with a controller at a single 

intersection. The focus of this research is to employ a single external microcontroller to manage 

operations of multiple intersections.  

1.2  Relevant Research  

Numerous research endeavors focused on improving the process of data collection, performance 

monitoring, and control of signalized intersections. Technological advancements in this field 

produced new techniques, including the application of external devices in the form of 

microcontrollers. For example, Texas Transportation Institute developed a system to 

automatically collect data that required additional data processing hardware to be in the cabinet 

as well as count detectors placed in front of the stop bar. Smaglik (2007) developed an event-

based data collection system for generating actuated controller performance measures. They 

developed an integrated general purpose data collection module that time-stamps detector and 

phase state changes within a National Electrical Manufacturers Association (NEMA) traffic 

controller. To facilitate this, the ASC/3 controller software was enhanced to include a data logger 

to collect time-stamped controller and detector status and an ftp server to send data files hourly.  

Liu (2008) built a system for high resolution traffic signal data collection and performance 

measurement with support from the Minnesota Department of Transportation. The system, called 
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SMART-SIGNAL (Systematic Monitoring of Arterial Road Traffic and Signals), was able to 

simultaneously collect and archive event-based traffic signal data at multiple intersections and 

automatically generates real-time performance measures including queue length, travel time, and 

number of stops.  

Ahmed et al. used a Rabbit microcontroller for data collection from ASC/3 traffic controllers, 

performance monitoring, and control strategy implementation. Two microcontrollers on separate 

networks were used to collect data from their respective traffic controllers connected to a 

Hardware-in-the-Loop Simulation (HILS) network. In this research, a similar approach was 

adopted, except that a single microcontroller was used to collect data from multiple traffic 

controllers instead of using one for each of the traffic controllers (Ahmed, 2009). 

1.3  State of Queue Spillback Methods 

Addressing Queue Spillback 

Previous research documents and addresses various causes of queue spillback congestion. Some 

researchers addressed this at a local intersection level. Wu (2007) developed a method that 

considers a queue spillback scenario stemming from having insufficient turning lane lengths. 

Smaglik and Beaird worked with a method for modifying signal operations in response to 

downstream intersection queue spillback (Smaglik, 2006; Beaird, 2006). Beaird mentioned 

several reasons for flow restriction, including queue spillback from a downstream intersection, a 

disabled or stalled vehicle in the flow, or a railroad blockage resulting from a slow moving 

freight train (Beaird, 2006). Some other researchers focused on addressing queue spillback and 

associated problems from a network-wide perspective. Tian developed a framework for 

employing real-time adaptive diamond interchange control strategies based on two common 

diamond interchange phase plans and addressed freeway on-ramp queue spillback (Tian, 2006).  

Queue Spillback Detection Methods 

Current queue spillback detection methods utilize two kinds of detection information: presence 

and count. It is fairly common to place detectors at a distance from the stop bar to detect the 

presence of a queue. Detector counts exist in research and in software proposing control 

strategies to address queue spillback. A queue spillback detection method can be classified into 
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two groups: i) responsive and ii) predictive. The first approach detects queue spillback when it 

occurs, and the second approach predicts queue spillback before it occurs.  

Some researchers worked on developing a responsive queue spillback detection method. Smaglik 

developed an algorithm that integrates real-time stop bar presence detection with real time flow 

rate information to identify a downstream flow restriction (Smaglik, 2006). The algorithm 

measured headways using the detector status for the last 10 seconds of the green time. The flow 

was considered to be restricted if the phase was green and the average headway for the previous 

10 seconds was greater than a specified threshold value determined from historic data. Beaird 

(2006) also developed an algorithm using the stop bar detection to detect queue spillback for a 

phase. Conditions used to detect queue spillback were: (a) the phase is green and (b) the 

detection zone is occupied for 10 seconds, and (c) the flow is zero or minimal (Beaird, 2006).  

A predictive queue spillback detection method can define the position of the back of queue. The 

queue length may increase even while it is being discharged until the discharge shock wave 

reaches the last queued vehicle. Liu (2008) proposed a method of real time queue length 

estimation to determine the position of the back of queue.  

1.4 Problem Statement  

Previous traffic control research has defined causes of queue spillback and its effect on approach 

capacity. Some of this research goes as far as suggesting methodologies to determine control 

strategies that prevent queue spillback or reduce the symptoms. However, these control strategies 

were not implemented in an NTCIP compliant system. In addition, these strategies have not been 

tested in real-time without requiring human intervention. Therefore, an architecture needs to be 

developed that integrates NTCIP compliant traffic controllers and supports the implementation 

of an automated real-time response for multiple intersection traffic control.  

Previously, a system of queue spillback detection and control feedback was developed at the 

National Institute of Advanced Transportation Technology (NIATT) (Ahmed, 2009). In that 

system, the microcontroller used the NTCIP 1202 protocol for real-time data collection from the 

ASC/3-2100 NTCIP 1202 compliant traffic controllers. Using NTCIP compliant controllers 

allowed an external device to change traffic signal control parameters (such as maximum green) 
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while operating. This opened the door for accelerated development and testing of control 

strategies using HILS and a microcontroller. This capability allowed the application of a wide 

range of control strategies. However, in the case of this previous work, the collection of data and 

changing controller parameters was limited to the local intersection as the microcontroller could 

only communicate with one traffic controller within the developed architecture. The need still 

exists for improving the system architecture to enable the application of the control strategy 

simultaneously and automatically over more than one intersection.  

Previously developed control strategies by Ahmed (2009) were tested by a simulated real-world 

network of two intersections and with actual traffic data collected from the field. The code 

developed for this research was hard coded to work with the tested intersections. In order to 

apply the program in other similar traffic networks, it needs to be flexible to readily 

accommodate different controller settings and network configurations.  

1.5  Research Objectives 

In an effort to develop an improved architecture and to address queue spillback conditions, this 

research achieved the following objectives: 

Objective 1: Extending the current architecture developed at NIATT for the Smart 

Signal System to implement proposed performance monitoring and control strategy 

decisions automatically for a system of traffic controllers.  

Objective 2: Incorporating performance measures, e.g., green time utilization (GTU), 

into the queue spillback control decision making process. 

Objective 3: Identifying potential opportunities for applying systems resembling the 

proposed architecture, and transferring knowledge for future research. 
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Chapter 2: The Architecture Description 

This chapter describes the proposed architecture that was developed as part of the research with 

an objective of extending a current architecture to support the application traffic control 

strategies to more than one intersection. This chapter is organized into six sections. The first 

section describes the specification and constraints of the hardware upon which the architecture 

relies. The second section introduces the testing environment. The third section outlines the 

program structure of the code used in the microcontroller. The fourth section gives an overview 

of how a user would implement the architecture. The fifth section qualitatively assesses the 

capabilities of the architecture. Finally, the sixth section briefly describes potential applications 

of the proposed architecture. 

2.1 Specifications and Constraints 

The communication between the traffic controllers and the microcontroller was established in 

research conducted by NIATT (Dixon, 2011). The NTCIP 1202 standard communication 

protocol was used in the research to establish the communication. In this research, the same 

platform was applied to establish the communication. This section describes the following: i) the 

microcontroller and development environment, ii) the traffic controller communication and data 

logging features, and iii) the relevant communication protocols. These three discussions describe 

the hardware characteristics needed for the research and are necessary to understand the test 

environment. 

Microcontroller and the Development Environment 

In a similar previous research endeavor of implementing external control logic by (Ahmed, 

2009), the Rabbit 3000® microcontroller (Rabbit 3000A LQFP Microprocessor, manufactured 

by Digi International) was chosen for the convenience of Ethernet connectivity support and 

processing speed. For the same reason, this processor is used for this research. The clock speed is 

55 MHz, which supports real-time data collection and control logic application. Faster products 

are available, but the existing system was adopted to build on previous work.  

The Rabbit 3000 processor is programmed using the Dynamic C software development system-

an integrated C compiler, editor, loader, and debugger created specifically for Rabbit-based 
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systems. Developing software with Dynamic C enables the users to write, compile, and test both 

C and assembly code without leaving the Dynamic C development environment, and no costly 

in-circuit emulators are required. Full TCP/IP stack with source code is provided in Dynamic C. 

In the previous research, the Dynamic Object-SMTP-UDP/IP-Ethernet protocol stack was used 

to develop the libraries that facilitate the communication between the microcontroller and the 

traffic controller. Selection of the same microcontroller and software development environment 

provided the advantage of using the library files developed and tested in previous research (Digi 

International, 2007).  

The communication and data processing capability of the Rabbit microcontroller is limited by 

the processing capacity of the controller, size of the dynamic data packets, number of traffic 

controllers, and the physical network configuration. Chapter 4 quantifies the effects of these 

limitations on the overall performance of the architecture. 

Traffic Controllers  

The ASC/3-2100 traffic controller was developed to comply with the NTCIP communication 

protocol to achieve interoperability and interchangeability with computer and other electronic 

traffic control equipments from different manufacturers. The ASC/3 traffic controller adopted the 

NTCIP sub network level communication protocol, which includes all mandatory and optional 

Dynamic Objects. This controller has optional Ethernet support for 10/100 Base T networks, 

which enabled building the proposed network. It also allows the data exchange through the 

Synchronous Data Link Control (SDLC) communication ports, which was not used in this 

research.  

Another very important feature of the ASC/3-2100 controller is its support for logging detector 

volume and/or occupancy data. This feature is assignable by detector. Each of the detectors can 

be configured for the controller to store the volume and/or occupancy data for a certain time 

period, defined as “volumeOccupancyPeriod” in the NTCIP 1202 v01.07 definitions and it is 

displayed as “NTCIP LOG PERIOD” in the ASC/3-2100 controller front panel. 

http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Interchangeability
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Communications Protocol and Dynamic Objects  

The NTCIP sets the rules that allow user specified data to be organized into messages that can be 

understood by other NTCIP compliant devices. The Simple Network Management Protocol 

(SNMP) is included in the NTCIP as a communication standard to manage network devices. 

Traffic controller software manages objects, or variables, that store parameters relevant to the 

current operation of the intersection. Each of these objects that are accessible via SNMP is called 

an “object” and they reside in a virtual database in the controller. When requested, traffic 

controllers can use SNMP to communicate portions of their database to requesting devices. 

Objects are given numerical names, which are organized hierarchically to facilitate logical 

access. Each managed object is described by its name, syntax, and an encoding. The unique 

name, known as the object identifier (OID), identifies the object. The syntax defines the data 

type in terms of integer or a string of octets. Finally, the encoding describes how the managed 

object information is serialized for transmission between machines” (DeVoe, 2009).  

All definitions of standardized objects used in this research are contained in the document 

“NTCIP standard 1202, Object Definitions for Actuated Traffic Signal Controller Units” 

(AASHTO / ITE / NEMA, 2005). Appendix E contains a list of commonly used objects. Each 

OID is written as a sequence of decimal digits separated by periods and is generally around 17 

bytes long when encoded.  

For application layer bandwidth reduction, the NTCIP technical working group developed the 

Simple Transportation Management Protocol (STMP) that uses a similar GET/SET paradigm to 

that of SNMP without the protocol data unit (PDU) overhead of object identifiers and error 

codes. The content of every data packet requires each protocol entity to have prior knowledge of 

the configuration of that message. Every message is built from a user defined structured 

collection of variables known as a “dynamic object.” The process of building a dynamic object is 

a runtime operation that requires communication using SNMP and a list of object identifiers to 

include in the dynamic object. NTCIP dictates that up to 13 dynamic objects can be defined 

within the traffic controlling device (AASHTO / ITE / NEMA, 2006). In the proposed 

architecture, data were requested from the controller for a dynamic object containing 75 objects. 

The size of a dynamic object limits the microcontroller data collection resolution to 4 time steps 
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per second, i.e., the microcontroller can send and receive data at approximately every quarter of 

a second.  

2.2 Hardware Testing Environment 

The testing environment was comprised of a traffic network developed using the VISSIM 5.30 

simulation software, HILS using a NIATT controller interface device, Econolite ASC/3-2100 

traffic controllers, and a microcontroller acting as an external data collection and control device. 

Figure 1 shows the basic hardware elements and the connection types in the system. The 

proposed architecture implements this environment in an extended form of a distributed traffic 

control network with multiple traffic controllers. Chapter 3 provides a more detailed description 

of the entire network and lab test-setup.  

 

Figure 1: Hardware testing environment: HILS and microcontroller. 

 

2.3   Program Structure 

The main program and the associated libraries were developed in the Dynamic C 9.52 

development environment. There are three principal libraries developed for this research that 

take advantage of libraries provided by the Dynamic C software package. The first two libraries 

contain the global definitions of data types for the variables used in the main program and other 

libraries, and the traffic system definition inputs respectively. The third and the most important 

library, which was previously developed and named as “Dynamic Signal Control Library,” 

contains two basic sections: the first section establishes the communication with the controller by 

sending data requests to the controller and receiving the data, while the second part processes the 

data, measures performance (e.g., detects queue spillback), determines control decisions, and 

sends data streams to the controller as feedback. This library was modified as part of this 

research to accommodate the process of communicating with multiple traffic controllers. The 
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function-partitioning model and the data flow process that is required for this communication is 

described in the following collaboration diagram: 

Task Manager
(Main)

Initialize Socket
Initialize Traffic Controller 

&
Read Data

Traffic 

Controller IP

&

Feedback 

Decision

Open 
UDP Socket

Resolved 

IP

Initialize Global 
Variables

Process 
Dynamic 

Object

Error 

Code
Status

code

Socket Close 

Status

&

QS Detection

Status

Select Next
Traffic Controller

Calculate  Performance 
Measures (e.g., GTU)

Data Process

Status

Close UDP 
Socket

Next 

Controllers IP

Detect 
Spillback

QS Detection 

Status

Send Control 
Feedback

Controller IP

&

Feedback Decision

Detection 

Status

Socket close 

status

Socket close 

status

 

Figure 2: Program collaboration diagram.  

 

The above collaboration diagram explains the basic tasks conducted by the proposed 

architecture. These tasks include communication with multiple traffic controllers, data collection 

and processing, performance measure calculations, queue spillback detection, and control 

feedback implementation. After initializing the socket, the task manager (main) starts the 

communication with the first traffic controller. Each traffic controller is identified by its Internet 

Protocol (IP) address. Once the communication is established, the global variables are initialized 

and the requested dynamic object is processed. Data contained in the dynamic object are 

extracted and stored in the global variables. Collected data are used to calculate the performance 

measures and detect queue spillback. The program keeps waiting for the traffic controller to 

complete the data processing. When the data processing completes, the socket is closed and the 

process is repeated to communicate and collect data from other traffic controllers in the network. 

If queue spillback is detected, the feedback algorithm task (described later in this section) sends 

the control decision and the traffic controllers IP address (where the decision needs to be 

implemented) to the task manager. The microcontroller then communicates with that specific 
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traffic controller and implements the change. The task also contains the instruction about when 

to go back to the previous controller settings.    

Request Data Task: Building Dynamic Object 

The process of requesting data from a traffic controller using a dynamic object was explained in 

section 2.1 of this chapter. However, it is necessary to explain how a dynamic object is built. 

According to the definition given in this chapter, a dynamic object is a user defined structured 

collection of variables, or objects, where each variable contains the data being requested. The 

definition itself contains valuable information of the dynamic object building process. The first 

part of this definition, “user defined collection of variables,” means that the content of the 

dynamic object can vary and the user has freedom to choose different variables and to define the 

size of the dynamic object for their purpose. Second, the variables have to be “structured,” which 

indicates that the order of these variables inside the dynamic object must be known and given.  

Therefore, the first step towards building a dynamic object is to identify which data are needed 

from the traffic controller. Each of the traffic controller parameters has a unique NTCIP object 

ID (OID) defined in SNMPv1202v107. The OIDs of the selected variables are collected and 

ordered in proper sequence. It should be noted that the order of the OIDs is important, because 

the traffic controller‟s response message packages the requested data in the same order. Table 1 

shows the list of 12 objects that were used in this research to construct the dynamic object and 

their data accessibility determined by the controller manufacturer. The first seven objects are 

phase parameters and the following five are detector parameters. 
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Table 1: Data Contained and Accessibility Status of the Objects 

Name of the Object Data Stored Accessibility 

phaseStatusGroupVehCalls Current call status of phase vehicle Read-only 

phaseStatusGroupGreens Phase group green status Read-only 

phaseStatusGroupYellows Phase group yellow status Read-only 

phaseStatusGroupReds Phase group red status Read-only 

phaseMinimumGreen Minimum green time of a phase Read-write 

phaseMaximum Passage time of phase Read-write 

phaseStatusGroupPhaseNexts Maximum green time of a phase Read-write 

vehicleDetectorStatusGroupActive Detector status Read-only 

detectorOccupancy Occupancy for a occupancy period Read-only 

detectorVolume Vehicle counts for a occupancy period Read-only 

volumeOccupancySequence Sequence number of occupancy period Read-only 

volumeOccupancyPeriod Current occupancy period Read-write 

Traffic System Definition Input 

The advanced programming features of ASC3 traffic controllers allow traffic engineers to work 

with various numbers of phases, different action plans, and flexible detector phase assignments. 

However, it does not provide some very valuable information regarding the traffic network. As a 

result, it is necessary to provide this information to the external logic processor, the Rabbit 3000. 

For example, the researcher can define the network to the microcontroller in terms of how many 

lanes a particular phase serves, which lane a particular detector monitors, or which upstream 

phases contribute to traffic served by a downstream phase in the network. One objective of this 

research is to develop the ability for researchers to define these network characteristic in order to 

analyze various traffic scenarios with greater detail. A library file was developed as a first step 

towards meeting this objective. The list of inputs and the added functionality of this library are 

described in Section 2.4 of this chapter. A list of functions used in this library is also provided in 

Appendix A.    

Performance Measure Tasks  

While the traffic simulation is running in the HILS environment, the microcontroller 

communicates with all the traffic controllers in sequence. During this time, the microcontroller 
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retrieves the detector occupancy and controller state information from all the traffic controllers. 

Using the collected data, it calculates the performance measures for each intersection. In this 

research, green time utilization was selected as the performance measure to derive a feedback 

control decision. A new function was added in the “Dynamic Signal Control” library file for the 

calculation of GTUs. Different sets of variables were defined to store the detector occupancy 

information of different intersections. These data were used later to calculate the phase GTUs for 

each intersection.       

Feedback Algorithm Tasks  

At times during queue spillback, the microcontroller executes decision logic to choose the 

appropriate control strategy and communicate the control strategy settings to the traffic 

controllers. The traffic controllers receive the decision and implement them during the 

simulation in real-time. The task can be subdivided into three steps: i) detection of the queue 

spillback by implementing the selected detection method, ii) derive a control decision from the 

calculated performance measures, and iii) implement the control decision in one or more traffic 

controller(s) by changing the desired controller parameter (e.g., phase split).  

In the first step of the feedback algorithm task, queue spillback characterization logic was 

programmed in the microcontroller to detect queue spillback. In this research, the detection logic 

was developed based on the method proposed by Smaglik (2006). To program the logic in the 

microcontroller, detector occupancy and signal status of the impeded upstream phase were 

collected from the upstream intersection signal controller. When the logic detected a queue 

spillback, the program moved to the second step to derive a control decision. In this step, the 

performance measure task was recalled to calculate the phase GTUs at the downstream 

intersection. From these calculations, some phases were identified for reducing the green splits to 

give more green time to the bottleneck phase at the downstream intersection. In the final step, 

new phase splits were written to the specific traffic controller for the phases identified in the 

second stage. 
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2.4 User Implementation 

Implementation of the proposed architecture was facilitated in terms of inputting data and 

outputting the network performance. The following sections entitled “data input” and “data 

output” describe how this was accomplished.  

Data Input 

It is necessary for the program to support various traffic scenarios and intersection geometries 

rather than being hard-coded for some specific cases. To ensure this program functionality, a 

computer program was developed where the user was able to make inputs for the variables that 

define the traffic network, including intersection geometry. All library functions were thoroughly 

tested for desired outputs and properly documented for future application and modification. This 

library, named “Network Topography.lib,” adds several functions to the program by allowing the 

following network description information to be entered: 

 Distance between intersections  

 Intersection upstream/downstream relative to the traffic stream served by a phase 

 Upstream phases that contribute to a given phase 

 Traffic movements served by a phase 

 Lanes served by a phase 

 Phase served by a detector 

 Detector location in terms of lane and setback 

 Phase parameters (e.g., min green, max green, passage time, etc.) 

To ensure the above mentioned functionality, user inputs were made through the “constants” 

defined at the beginning of the library. These are actually variable information related to a 

specific traffic network, however, in the library they were defined as constants so that they can 

be modified easily. For user convenience and elimination of input errors, these constants were 

listed in a text editor. After editing all the input values required to define a certain traffic 

network, the section of the file that lists the constants and user defined values is copied to the 

library before compiling and then executing the main program. The main input variables are 

listed in Table 2. The first five variables establish the bounds to define arrays for the network. 
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For example, “Max_nodes” defines the maximum number of intersections in a specific traffic 

network that this program can handle.  

 

Table 2: Input Variables to Define Network Topography   

Name of the Variable Description  

Max_nodes  Maximum number of nodes allowable  

Max_link Maximum number of links  

Max_phase Maximum number of phases 

Max_mvmnt_phase Maximum number of movements served by a phase 

Max_lane_approach Maximum number of lanes in an approach 

Distance[Nodes] Distance between the intersections 

Number_lane[phase] Number of lanes serving a particular phase or movement 

Mvmnt[phase] Movement associated with a given phase 

Intx_number[Nodes] Intersection number for a network of multiple intersections  

Det_number[lane] Detector numbers serving a certain lane  

Det_position[lane] Detector position, i.e., distance from the stop bar 

Data Output  

This section describes two methods developed to monitor the traffic signal timing performance 

in real-time while implementing the external microcontroller. The first method uses the software 

output window, named “stdio” window for Dynamic C. Desired outputs were printed on the 

“stdio” window in real-time. However, this is very problematic as the program updates and prints 

the data several times in a second. To be able to monitor the performance with great ease, a web 

based user interface was developed. Initially, the signal state of two intersections were displayed 

and tested. However, other information that is of interest to the researchers like detector status, 

performance measures data, or an error massage can be displayed as well. To accommodate this 

additional information, further program instructions similar to that used for signal state display, 

will be needed. The webpage can also be used to give input to the server (the Rabbit) by 

applying HTML forms. To illustrate this functionality, a button (named “feedback” on the 

webpage with a status display light) was provided on the webpage that can push a command (i.e., 

a control decision, like changing phase passage time) to the server, if pressed.  
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Figure 3: Web-based user interface. 

 

The webpage was given self updating capability that ensures the displayed information is 

current. However, real-time display of the information is limited by the network speed, webpage 

refresh rate, and Rabbit‟s capability to perform as a web server. It is important to remember that 

the Rabbit can perform multiple tasks, but only one at a time. For example, it collects 

information from multiple traffic controllers, processes those to estimate the performance 

measures, and sends feedback to the controllers in sequence. Therefore, serving a webpage with 

too much functionality can increase the processing burden to an extent where it might stop 

running the program.  

2.5 Architecture Assessment 

The architecture offers an efficient method for collecting information from the traffic controllers. 

The overall signal control system effectiveness was improved by implementing an Ethernet 

based infrastructure and connecting multiple information sources, i.e., traffic controllers. The 

system described has the capability for improved communications that can result in more reliable 
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operations and a higher degree of functionality. The purpose of this section is to qualitatively 

assess the proposed architecture in terms of performance and possible applications. 

Quick Experiment Implementation  

Devices like the Rabbit microcontroller and traffic controllers are readily able to communicate 

using NTCIP protocols. The testing environment resembles the field conditions, which offers 

increased testing accuracy and consistency. Furthermore, for small traffic networks, the test 

setup and data collection process can be done in a short amount of time which makes the system 

applicable for testing a wide range of traffic conditions and working out possible solutions fairly 

quickly.  

Low Cost Entry to Traffic Control Strategy Development 

The architecture described in this research can be implemented to develop new methods for data 

collection and performance evaluation. The communication with the controllers is direct and the 

implementation method in the field will be simple and cost effective, given reliable Ethernet 

communications and consistent NTCIP 1202 implementation. The only cost involvement for the 

system is an external microcontroller (e.g., the Rabbit, that comes with its own C based software 

development environment), and the hardware required for networking, e.g., switch/hub. 

Therefore, the system has the potential to create research or beta product (i.e., microcontroller 

and the program) that can act as a precursor for formal inclusion in traffic controllers. 

Supports a Multiple-Controller System 

The biggest advantage of the proposed method is that it is capable of connecting multiple traffic 

controllers in a single Ethernet based distributed network. This offers the collection of traffic 

state information from multiple intersections. This is a substantial improvement over the 

previously developed system where a microcontroller could only communicate with one traffic 

controller. In contrast, the proposed architecture connects multiple traffic controllers with a 

single microcontroller. This significantly reduces the number of logic processors, making it more 

cost effective and improves coordination of the monitoring and control activities.  
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Limited Network Size 

Although the proposed system has advantages for developing traffic control strategies, it has 

limitations. The limitations are mainly posed by the microcontroller‟s data processing ability and 

the data transferring speed through the network. These limitations become important for time 

dependent data (e.g., signal and detector state information), because they need to be 

communicated with very short lag time for real-time control.  

For information that does not vary with time (e.g., phase minimum green, phase passage, cycle 

length, or the offset settings in the controller) the time gap will not be problematic. However, the 

signal and detector state data might become too old for use. Fortunately, the ASC/3 traffic 

controller has an advanced feature of detector occupancy and volume data logging. This logging 

feature was used in this research instead of requesting detector state in real-time. Signal state is 

less sensitive to the lag time and should not be too old for situations with lags less than 1 or 2 

seconds. 

2.6 Suggested Work 

The proposed system can be used to apply various control decisions related to a specific traffic 

network. However, there is still scope for development before full scale implementation. This 

section is focused on suggesting future work needed to improve the performance of the 

architecture. 

Alternate Traffic Controllers 

Although this experiment works well with the Econolite ASC/3, in order to achieve industry 

adaptation, the system should be tested on other (Ethernet enabled) traffic controllers that 

conform to NTCIP 1202 standards.  

Substitute with Complete Controller State Log 

Recently, the ASC/3 controller software was enhanced to include a data logger to collect time-

stamped phase and detector state changes. Controller storage allows for more than 24 hours of 

raw data. These raw data are stored in a binary file on the controller in the format of 100 

millisecond time-stamped phase and detector state changes. Data can be retrieved from the 
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controller by using a transmission control protocol/Internet protocol network connection, where 

the controller serves as a file transfer protocol (FTP) server (Smaglik, 2007).  

Once downloaded from the controller, a Windows-based wizard can be used to convert the 

binary data files into comma-separated-value (CSV) files for use in producing the appropriate 

reports. The maximum size of the compressed data logs for one hour is less than 100 kb, which 

can be downloaded and converted into CSV files to produce performance measures such as 

arrival type, delay, volume-to-capacity (v/c) ratios, or served volumes. These data files could 

provide a more efficient means of gathering the detailed complete controller state data necessary 

for developing and running control strategies.  

Expand User I/O Interface 

The web based user interface developed as part of this research has limited functionality in terms 

of user data input capability and displaying performance measure data. The interface has been 

introduced in a basic form to demonstrate the convenience it avails to future users. The signal 

status of two intersections was displayed, although any other data, e.g., detector state, detector 

count, detector occupancy, and performance measure data could be displayed as well. Expansion 

of the user interface could allow the user to input the traffic network description data from a 

visually appealing webpage to the microcontroller program. Thus eliminating the need to directly 

edit the library file developed for this research. 

Wireless Connection to Enable Vehicle-Infrastructure Prototype Work 

Connected Vehicle (CV) represents a new paradigm for surface transportation (AASHTO, 2006). 

It is a cooperative effort between federal and state departments of transportation (DOT's) and 

automobile manufacturers. Together they are evaluating the technical, economic, and social 

feasibility of deploying a communications system that will be used primarily for improving the 

safety and efficiency of the nation‟s road transportation system. CV presents opportunities to 

advance surface transportation safety, mobility, and productivity through cost effective wireless 

communications between vehicles and the infrastructure. CV will support vehicle-to-

infrastructure communications for a variety of vehicle safety applications and transportation 

operations. CV also enables the deployment of a variety of applications that support private 

commercial interests, such as vehicle manufacturers. On-board and roadside equipment will 
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provide data to the applications that will process it for different uses and then send information 

back to the users.  

The communication standard being used in this research, i.e., NTCIP, establishes protocols to 

communicate with roadside and other traffic management devices. If a microcontroller with 

wireless communication ability, e.g., Rabbit 5000 is implemented in the proposed system of 

networked traffic controllers, then it might be possible to integrate the system with CV. This will 

directly collect the data from the vehicles and other roadside devices and inform the drivers of 

system performance updates.  

Adopt a Faster Microcontroller 

For this research, a Rabbit 3000 microcontroller was used with Dynamic C 9.52 development 

software. However, this processor and the development environment is not the latest from 

Rabbit. Moving to a faster processor (e.g., Rabbit 5000, PSoC 5, etc.), could yield better 

performance in terms of code execution and data processing time in the microcontroller. This 

would allow processing more complex instructions and control a larger system of traffic 

controllers. 

Application of the Rabbit 5000 microcontroller in the proposed network is expected to bring 

significant improvement in the system performance for its faster data processing speed and better 

network connectivity features. PSoC 5 might also be a viable replacement for Rabbit 3000. PSoC 

5 is a powerful low cost device powered by the “PSoC Creator” Integrated Development 

Environment that supports C based program instructions. PSoC Creator has a user friendly 

graphical design editor to form a hardware/software co-design environment. Programming in 

PSoC is also facilitated by the integrated source editors, and built-in debugger of the PSoC 

Creator.  

Transferring Knowledge 

This research is an effort to improve the techniques previously developed to implement external 

logic processors as performance monitoring and decision making devices. The previously 

developed architecture was enhanced by making it possible for one microcontroller to 

communicate with multiple traffic controllers, instead of a single controller. This enhanced 
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system will offer greater flexibility to traffic engineering researchers by extending their test 

ground to a network of multiple intersections. With this extension, researchers will be able to test 

more comprehensive control strategies. However, any future development with the enhanced 

system will require researchers to have knowledge in the following areas, in addition to traffic 

signal systems operations:  

 Software development environment, e.g., Dynamic C development environment. 

 NTCIP dynamic object management (objective definition, requesting/sending, and 

reading/writing).  

In an effort to educate future researchers and traffic engineering students, a brief description of 

the Dynamic C development environment, the NTCIP communication standard, dynamic 

objects, and the data requesting tasks are presented in Chapter 6.   
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Chapter 3: Test Setup and Data Collection  

This chapter describes the detailed test setup established in the NIATT lab to test and validate the 

quality of communications between the Rabbit 3000 microcontroller and a system of multiple 

traffic controllers. The data collection process from multiple traffic controllers is also presented 

in this chapter.  

3.1 Lab Test Setup  

The architecture supports an NTCIP compliant automated environment, where the basic elements 

were described in Chapter 2. To the extent possible, the equipment used in this test environment 

is based upon standard industry products. Figure 4 describes the actual arrangement of the 

hardware devices used for the lab test. 

Hardware Devices 

The architecture is based on a 10 Mbps Ethernet backbone. The list of hardware, as shown in 

Figure 4, includes the following elements: 

Element 1: Rabbit Semiconductor RCM 3000 series microcontroller. 

Element 2: Eight network accessible Econolite model ASC/3-2100 NEMA TS2 Type 2 

traffic controllers. 

Element 3: Eight Controller Interface Devices (CID), one for each of the traffic controllers 

for HILS implementation.  

Element 4: Four computers to run VISSIM simulation software. 

Element 5: Two network switches/hubs to communicate Ethernet messages between the 

traffic controllers and the microcontroller for data retrieval and management.  

Element 6: NIATT local area network infrastructure was used for displaying information on 

the webpage, where the Rabbit microcontroller functioned as the server.  
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To load the program on the microcontroller, a computer (one of the four, shown in Figure 4) was 

used. It was connected with the Rabbit through a serial connection. Once the program was 

loaded to the microcontroller, the computer was no longer required to be connected.  

 

Figure 4: Communication architecture of the proposed system. 

 

Software 

VISSIM 5.30 simulation software was used to implement HILS and the Dynamic C 9.52 

development environment was used to load the C based program developed for this research into 

the Rabbit. Out of eight traffic controllers, five were running on operating system version 

V2.46.00, and the remaining three were running on version V2.40.00. However, no permanent 

substitution for changing controller firmware and system software was needed as the Rabbit was 

able to communicate with traffic controllers with different operating system and firmware 

versions. 
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Simulation Network 

The simulation used for this research emulated a real-world network of two intersections along a 

coordinated corridor in Lynnwood, WA. The two intersections were the I-5 south bound off-

ramp intersection and the Ash Way intersection at 164th St SW, shown in Figure . The two 

intersections were 400 ft apart from each other. The major street is 164
th

 Street with the 

eastbound and westbound movements coordinated. The intersection on Ash Way experiences 

queue spillback because of heavy westbound traffic, heavy traffic coming from the I-5-off ramp, 

and a short queue storage between the two intersections. This queue spillback occasionally 

blocks the I-5 off ramp intersection and breaks down the normal performance, which makes it an 

ideal case for applying the queue spillback control logic.  

 

Figure 5: Traffic network applied in the simulation. 

 

N
o
rt

h
 

A
sh

 W
ay

 

I-
5
 O

ff
 r

am
p

 

164
th

 St SW 



 

An External Logic Architecture for Implementing Traffic Signal System Control Strategies  25 

Communications 

The communication and data transfer occurring in the architecture can be classified into two 

main categories: i) communication between the simulation and the traffic controller that happens 

in HILS and ii) communication between Rabbit and the traffic controllers. All the traffic 

controllers and the Rabbit were assigned a unique IP address through which each of the devices 

is identified in the network during the data transfer process. Network switches facilitated this 

communication by guiding each data packet to its correct destination.  

The Rabbit, given the IP address 192.168.1.10, initiates the dynamic object request to one of the 

traffic controllers in the network. The first traffic controller was given an IP address of 

192.168.1.4, and for remaining controllers only the last digit was changed to form a new unique 

IP address. Once the Rabbit receives a response from the traffic controller, the main program 

determines the next controller from which to request data and sends a request to its address. Any 

number of traffic controllers can be included in this communication sequence. However, it will 

take longer to complete the sequence and update data for a given controller as the number of 

controllers increases.    

3.2 Data Collection 

To validate the proposed architecture, the data were collected from two sources. First, the signal 

and detector state data and the performance measure data were collected from the text file 

generated by Dynamic C for the outputs printed on the “stdio” window after each data read cycle 

(about every third of a second). Second, the signal and detector state data were collected from the 

simulation output (*.LDP file) printed every tenth of a second by VISSIM.  

The VISSIM simulation file was run on four different computers, as shown in Figure 5. Four 

computers were used to minimize communication latency problems. Ideally, for a full scale test 

with eight networked traffic controllers, eight CID/controller pairs should be connected with the 

computer that runs the simulation and the simulation should contain eight intersections (one for 

each CID/controller pair). However, previous research found that HILS latency increases with 

the number of CIDs. This is because increasing quantities of CIDs trying to communicate with 

the simulation at the same time can slow down the simulation. This is undesirable for this test, 

because the traffic controller processes information in real-time, so the data collected from the 
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two sources will become unsynchronized due to this latency. As a result, each of the four 

computers was connected with two traffic controllers for the HILS network, where one traffic 

controller controlled the intersection on Ash Way and the other controlled the I-5-off ramp 

intersection.  

Data were collected in three stages:  

1. To test the data exchange capability for static data (e.g., phase parameters), phase 

minimum green, phase passage, and phase max green data were requested from all eight 

traffic controllers. To ensure that the collected data resembled exactly what was stored in 

the controllers, each controller was programmed with different parameter values.  

2. To validate the proposed architecture, data were collected for phase status, detector 

actuation and occupancy status and detector volume from two sources, the Rabbit and the 

VISSIM output file. Information from the two files was compared to observe the 

difference, if any. Data were collected from two controllers (one for Ash Way and 

another for the I-5-off ramp intersection) for a 15 minute period.  

3. The Response time (time required to collect data from one traffic controller) data were 

collected for varying numbers of traffic controllers, e.g., 1, 2, 3…, 8 controllers. Varying 

the number of traffic controllers changed the number of requests for controller data. A 15 

minute period was used to collect data for each condition.  
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Chapter 4: Method Validation and System Size Limitation  

The main contribution of the proposed architecture is to demonstrate the ability of a 

microcontroller external to the traffic controller to accumulate data from multiple traffic 

controllers and use the data to derive control decisions. The architecture was validated by 

presenting the data collected by the microcontroller and comparing it to the ground truth data 

recorded by VISSIM. This comparison is the primary objective of this chapter. This chapter 

contains four sections that discuss the results of different tests. The purposes of these sections are 

summarized in the list below: 

Section 4.1 Data Exchange Capability Test: summarizes the proposed architecture‟s capability to 

read and write controller settings with a network of eight controllers. 

Section 4.2 Data Validation: summarizes the proposed architecture‟s ability to acquire different 

data types (phase status, detector status, five second detector occupancy logs, and five second 

detector volume logs). 

Section 4.3 System Size: quantifies the incremental effect of adding a controller to the 

architecture in terms of controller response time and data read cycle. Response time is the time 

from when the microcontroller initiates the request data task to the time it receives the data. The 

data read cycle is the time transpired between two consecutive times the microcontroller receives 

data from a given traffic controller. 

Section 4.4 Summary: summarizes the findings of the previous three sections. 

4.1 Data Exchange Capability Test  

The data exchange capability of the microcontroller with a single traffic controller has already 

been tested in previous research conducted by Ahmed (2009). However, a multi-controller 

environment targeted by this research needs to be tested. The first step is to test the data read and 

write capability of the Rabbit. It should be capable of reading any data readable through the 

NTCIP from any traffic controller connected in the network. It should also be capable of 

modifying a read-write accessible controller parameter of any traffic controller. The test was 

conducted to prove the Rabbit possess both of these capabilities. The test was done in two 
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phases, first with data that do not vary with time, e.g., phase parameters and then, later with the 

data that vary frequently with time, e.g., signal status.  

Reading Phase Parameters 

To test the Rabbit‟s data reading ability, three phase parameters, namely minimum green, 

maximum green, and phase passage parameters, were selected to read from all eight traffic 

controllers and these values were compared to what was manually programmed in each of them. 

A comparison of the actual input values to what was read by the microcontroller is shown in 

Table 3. The values are listed for all eight phases and for all eight traffic controllers. From this 

table it can be seen that all of the parameter values match. This shows that the Rabbit is capable 

of extracting information correctly from traffic control devices connected through an Ethernet 

network. A similar comparison of phase maximum green and phase passage resulted in the same 

level of accuracy which is shown in Appendix B. 

Table 3: Minimum Green Time Comparison for Data Reading Capability Test 

  

Writing to Traffic Controllers  

The microcontroller needs to be able to change some parameters in traffic controllers when it 

changes control strategies. The microcontroller‟s feedback decisions to the traffic controllers is 

usually implemented by changing values of some parameters that have write access like phase 
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splits, phase minimum or maximum green, phase passage time, offset, and cycle length. To test 

the data writing capability, the Rabbit was instructed to change the phase passage time, offset 

and cycle length to some specific values. Table 4 shows the comparison between the phase 

passage time values that the Rabbit wrote to the traffic controllers and the values manually read 

from the traffic controllers. Similar to the previous test, the values match. This demonstrates that 

the microcontroller can modify traffic control parameters in multiple traffic controllers with a 

single program instruction.  

 

Table 4: Phase Passage Comparison for Data Writing Capability Test 

 

 

4.2 Data Validation  

As shown earlier, the microcontroller can exchange data to and from at least eight traffic 

controllers using the proposed architecture. The data exchange capability presented was only for 

data that do not vary in time unless a traffic controller‟s action plan changes. However, precision 

in real-time reading of time-varying data, such as signal status and detector status, is another 

matter. For signal and detector status, a long time elapse between two successive data reads is a 

big concern, because it inaccurately represents intersection operations. To accurately and 

efficiently test the effects of network size, factors affecting the response time must be isolated 
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from factors affecting the data read cycle. This section quantifies the effect of the response time 

on data validity for a network containing two traffic controllers. Network size effects on 

response time and data read cycles will be quantified later in section 4.3. 

For a single controller, the response time is between 250 milliseconds to 300 milliseconds. 

Unfortunately, this response time increases when cycling through communications with more 

than one traffic controller. Therefore, to validate the performance of the architecture, the 

microcontroller needs to cycle through data requests with more than one traffic controller and 

then compare this with the simulation data. To validate the performance of the proposed 

architecture with time dependent data, a network of two traffic controllers was used for data 

collection and analysis. The collected data were analyzed to extract the phase status, detector 

status, logged detector occupancy, and logged detector volume. Comparisons of the data were 

made to analyze any inconsistencies.  

Phase Signal Status Comparison 

The phase status information was extracted from both the Rabbit microcontroller and the 

VISSIM output files, as described in section 3.2 of the previous chapter. For both intersections, 

the status of phases 2 and 4 was reported by the microcontroller and the simulation. The phase 

status data are presented side by side in Figure 6 to illustrate any mismatches. In the figure, 

“Intersection 1” refers to the intersection on Ash Way. Phase 2 and 4 were chosen to cover 

possible variations in traffic scenarios. Phase 4 is the coordinated phase for both intersections 

and it has the highest split demand. Phase 2 is the minor street phase conflicting with phase 4, 

and this is the case for both intersections. The phase status was reported for a 15 minute period, 

starting from 300 seconds of simulation time and ending at 1200 seconds. As shown in Figure 6, 

the two data sets are in close agreement with a slight variation of the microcontroller data 

lagging the simulation data. This variation is explained in more detail later in this chapter. The 

signal status comparison for the I-5 Off-ramp intersection gave similar results and is given in 

Appendix C. 
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Figure 6: Comparison of signal status data for intersection 1 (Ash Way). 

 

Detector Status Comparison 

Like the signal status, detector status is also subject to change in small time steps. In fact, 

detector status changes much more frequently on a sub-second scale. Furthermore, detector 

status represents the vehicle at an intersection, and as such, it plays an important role in 

signalized intersection operations.  

To compare the detector status data, two detectors were selected from both intersections. Similar 

to the phase status test, one detector serves a coordinated phase and the other serves a minor 

street phase. Detectors 5 and 7 were selected for the Ash Way intersection, and detectors 3 and 1 

were selected for the I-5-off ramp intersection. Detector status data were collected for a 15 

minute period from both sources. This increases the sample size and the range of observed 

conditions. Figure 7 shows representative results comparing detector status between 

microcontroller and simulation data for detector number 1 of the I-5-off ramp intersection. The 

other three detectors‟ status comparison graphs are similar and are included in Appendix D.  
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Figure 7: Comparison of detector status.  

 

In Figure 7, the Y-axis contains the difference in detector status. The line represents the 

difference in detector status, where a positive reading indicates a portion of time in which the 

simulation detector status is on, but the microcontroller detector status was off. A negative 

reading represents the opposite scenario. For example, at 345 seconds, the line is positive 

showing that the simulation detector was on, but it was off according to microcontroller data.  

The mismatch in the data mainly happens due to the difference in resolution of the two 

environments. The controller response time is about 250 - 300 ms, whereas the simulation 

collects data at every 100 ms. In addition, the variation of the controller response times results in 

some inconsistencies. In Figure 7, there are two noticeable areas of mismatch marked by circles, 

one between 550 to 600 seconds and the other at 800 seconds. In these two areas, there are 

several closely spaced mismatches, which indicate that the Rabbit is receiving calls from the 

detector, whereas in truth there is no incoming call according to the simulation.  

Even though the total amount of mismatched cases are significantly higher than that of a single-

traffic-controller network, all of these cannot be interpreted as losing detector calls or losing the 

detection of vehicles, which is demonstrated later in this section. As explained above, most of the 

mismatches happened due to the difference in reporting times of the two sources. These small 

detector status time differences should not pose a problem for performance measurement 
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purposes. However, increasing the number of controllers will further decrease the accuracy, 

because the controller response time will accumulate to further increase the lag between the 

simulation data and the microcontroller data.  

Detector Occupancy Comparison Using Five Second Detector Logs 

This test was conducted to demonstrate that in the proposed architecture the microcontroller is 

capable of detecting vehicles using a detector occupancy log accumulated by, and received from, 

eight controllers. Detector occupancy data were used in the green time utilization calculation and 

in the queue spillback detection method. The microcontroller needed to collect this data fairly 

accurately for the correct estimation of green time utilization and accurate detection of queue 

spillback. To conduct this test, detector occupancy data for five second intervals were collected 

from the traffic controllers. Then the detector state data were collected from the simulation and 

the occupancies were accumulated for 5 seconds to compare with the microcontroller data. 

Figure 8 shows the comparison of the occupancy data collected from the two sources for a 15 

minute period. From the comparison, it can be seen that there is no significant discrepancy that 

would pose a problem for performance measurements and queue spillback detections. This is 

interesting to note, given the variations in the detector status data, indicating that the detector 

status differences are insignificant for 5 second aggregation.   
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Figure 8: Comparison of detector occupancy from 5-second logs. 

 

Detector Volume Comparison Using Five Second Detector Logs 

This test was conducted to demonstrate that in the proposed architecture the microcontroller is 

capable of detecting vehicles using a detector volume log accumulated by, and received from, 

controllers. As seen earlier from the detector status test, detector status logged by the Rabbit 

microcontroller was frequently mismatched, which justifies using the detector volume log. An 

explanation is necessary to further support this decision.  

The response time of a traffic controller is about 300 ms, which means that for a system of two 

controllers, the microcontroller will take about 600 ms between two successive data packets from 

a particular traffic controller. If the intersection is on a road with a design speed equal to 30 mph, 

a 20 ft vehicle will take about 590 ms to traverse a 6 ft detector. Therefore, it is likely that the 

microcontroller will miss this vehicle‟s detection.  

As a result of these findings, traffic controller detector volume logs were used in the remainder 

of this research to improve detector reporting accuracy. Specifically, the ASC/3 detector logging 

setting “volumeOccupancyPeriod” was set to 5 seconds. 
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Figure 9: Comparison of detector volume. 

 

Vehicle counts for detector 5 of the Ash Way intersection are shown in Figure 9. The X-axis 

represents the time interval and the Y-axis represents detector volume. Data presented in the 

figure constitute a 15 minute period of simulation. Only in a few cases do the detector volumes 

differ. Illustrative cases are circled in the graph. It was observed from the data that occasionally 

the controller detector volume log did not count a vehicle in a given 5 second period, when the 

simulation did count it. However, in almost all such occasions, the log does count the vehicle in 

the following period. In order to quantify the vehicles that were left uncounted, the total number 

of vehicles was counted for the whole duration of the data collection. For instance, the total 

number of vehicles counted on detector 5 logged by the controller was 136, while the simulation 

count was 138. This difference is smaller than typical detection error that could be seen in the 

field (Bullock, 2004; Haoui, 2008). In addition, the detector data will only be used to estimate 

aggregated performance measures, not for phase service calls or green extension. Given these 

two points, the accuracy of the Rabbit‟s counts is adequate.  

4.3 System Size  

Although any number of traffic controllers can be connected in the proposed network, the data 

validation was only completed using eight controllers for the controller setting data. Detector and 

phase status data validation was performed with two controllers. However, it was an objective of 
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this research to identify the problems associated with the increase in network size, i.e., the 

number of traffic controllers. This section will relate the findings in the previous two sections to 

variations in network size.  

The size of the network is mainly restricted by two facts: i) the response time of the controllers 

increases with the increase in network size, and ii) for a large network the time required for the 

microcontroller to complete one data read cycle will exceed the specified detector logging period 

and be too long for a reliable sampling rate. As presented earlier in this chapter, the 

microcontroller can communicate with eight traffic controllers to retrieve data. However, the test 

was conducted with controller setting information, which is not time sensitive. If the data 

changes frequently, some data will be lost, and this data loss is a function of the network size and 

controller response time. This section describes the issues regarding the system size in light of 

controller response time and the duration of data read cycle.  

Response Time 

In this research, response time was defined as the time elapsed to complete a data read sequence 

for a traffic controller that is on a network containing other traffic controllers. It can be 

subdivided into three components: i) time taken by the microcontroller to process and send a 

request to a specific traffic controller in the network, ii) time taken by the controller to process 

the requested data and to send it back to the microcontroller, and iii) time taken by the 

microcontroller to process the requested data and end the communication before starting another 

data read sequence with the next traffic controller in the network. The process also includes the 

latency, which is the delay incurred in communicating a message (the time the message spends 

on the wire). Changes in latency are typically unavoidable through changes to the code, because 

it is a resource issue, which is affected by hardware adequacy and utilization. It is also important 

to notice that the microcontroller takes time to process other instructions in the program source 

code to perform other tasks, like processing the control logic. For example, when the 

microcontroller was asked to output the signal status data for eight phases, the response time was 

about 285 ms. On the other hand, the time increased to about 295 ms to output the detector 

volumes for all 20 detectors. For the first case, the microcontroller went through a task only eight 

times, compared to twenty times in the second case. Therefore, the response time also varies with 

the amount of C instructions used by the control logic.  
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The response time for individual traffic controllers was observed for different network sizes, 

starting from one traffic controller and ending at eight. For each case, data were collected for a 

15 minute period, and the same program instructions were used. The results are shown in Table 5 

from which it can be seen that the mean response times can be classified in three groups based on 

the number of traffic controllers in the system, i) one controller, ii) two ~ five controllers, and iii) 

six ~ eight controllers.  

 

Table 5: Descriptive Statistics of Controller Response Time Data 

Number of Traffic Controllers 1 2 3 4 5 6 7 8 

Mean (millisecond) 250 282 281 281 280 507 509 510 

Standard Error (millisecond) 0.05 0.27 0.30 0.26 0.24 0.27 0.52 0.21 
Standard Deviation 

(millisecond) 0.47 2.68 2.96 2.55 2.36 2.69 5.03 2.09 

Minimum (millisecond) 248 277 277 278 278 504 503 503 

Maximum (millisecond) 251 288 292 294 295 516 525 516 

 

The mean response time increased as the number of traffic controllers increased from one to two. 

This is understandable because for a system of more than one traffic controllers, the 

microcontroller needs to establish the communication with a traffic controller and end the 

communication after reading the data. Whereas for just one traffic controller in the system once 

the communication is established, the microcontroller does not need to spend time opening or 

closing the sockets. Response time experienced a significant jump when the network size 

increased from five to six traffic controllers. This increase in response time may be due to the 

addition of another network device; a hub that was used to connect additional traffic controllers. 

For network hubs, performance decreases with the increase in the number of nodes connected 

through it.  

The processing power of the Rabbit 3000 might have created a delay in data reading as well. 

Therefore, it was of some interest to see whether replacing it with a faster microcontroller can 

reduce the response time. To test this, a 5000 series Rabbit microcontroller was implemented to 

estimate the response times. The program was run with compatible Dynamic C version 10.50 as 

Rabbit 5000 is not able to execute a program using Dynamic C version 9.52 or other older 

versions of the software. Although, a faster processor was expected to increase the performance 
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by reducing the response time, the results were quite opposite. The average response time was 

about 450 ms for 5 or less traffic controllers and about 700 ms for six or more. The reason was 

that the Rabbit 5000 ran the program on Dynamic C 10.50, while the program was written with 

an older version of the software, Dynamic C 9.52. In order to run on the Rabbit 5000, the 

program had to emulate the libraries written with the older version of Dynamic C, which 

eventually took longer execution time. Therefore, to benefit from using a faster microcontroller, 

the program should be written on the software development environment that comes with the 

microcontroller.  

The effect of response delay in real-time control is further explained in Figure 10, where the 

signal status of phase 2 and 4 of the Ash Way intersection is displayed in greater resolution. The 

difference in reporting time of an event between the simulation and the microcontroller can be 

observed from Figure 10. In Figure 10, a gap on the signal status bar represents the time taken by 

the simulation or the microcontrollers to report a change in the signal indication. The graph 

shows that the gaps are wider for the microcontroller than for the simulation. For the 

microcontroller, this time gap varied and can be as high 0.7 seconds, whereas it was consistently 

0.1 seconds for the simulation. The graph also shows the difference between true occurrence 

times (simulation time) of an event and the time when it was reported by the microcontroller. For 

example, in phase 2 the start of red was reported 1.2 seconds later by the microcontroller. It 

should be noted that this variation in the reporting time was observed when there were only two 

controllers. Table 5 shows that this variation in reporting time would gradually worsen with an 

increase in the number of controllers. This gives us an indication of how the systems‟ 

performance will be affected if the network size increased.  
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Figure 10: Response delay in signal status display. 

 

Duration of Data Read Cycle 

As described in the previous section, response time increases with the increase in network size. 

However, the most significant issue to consider while increasing the network size is the duration 

of a data read cycle. That is, the time taken by the microcontroller to complete a data reading 

sequence for all the traffic controllers. If four traffic controllers were in the network, the duration 

of the cycle would be four times the response time (values reported in Table 5), that is, there 

would be a time elapse (4 controllers × 0.281 seconds/controller = 1.124 seconds) between two 

successive data packets from a particular traffic controller. The data read cycle will be even 

longer for a system of six or eight traffic controllers. This data read cycle limits the frequency of 

data coming from an intersection. Moreover, this frequency is critical for accurate estimation of 

performance measures. In essence, a lower sampling rate leads to less accurate performance 

measure estimates, which may lead to inaccurate control decisions. Therefore, this data read 

cycle is a serious limiting factor for the system size within the proposed architecture.  
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4.4 Summary  

The system architecture was validated with both time independent and time varying data. The 

system was accurate for the time independent data, and the accuracy was unaffected by system 

size. For the time varying data, such as detector and signal status, the accuracy was found to be a 

function of the system size. The data read cycle between successive samplings observed during 

the data collection was the main limiting factor for data accuracy and system size. Due to 

frequent changes in detector status, detector logs of occupancy and volume data can be used to 

avoid losing vehicle detections. However, the signal status data during this data cycle read would 

be increasingly obsolete. This obsolescence would eventually undermine the performance 

measure and control decision accuracy, as the number of traffic controllers in the architecture 

increases.  
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Chapter 5: Performance Measure and Feedback Process Evaluation 
In the previous chapter, the method was validated with raw data collected from multiple traffic 

controllers. The objective of this chapter is to demonstrate that the architecture can not only 

collect the data, but use it to estimate performance measures and determine control feedback. In 

this chapter, the architecture performance is evaluated in terms of detecting queue spillback, 

estimating GTU as a performance measure, and the quality of its feedback decision process for a 

specific queue spillback scenario. 

5.1 Context: Insufficient Downstream Storage 

Queue spillback is a common characteristic of arterial congestion that can occur for several 

reasons. One of the more common queue spillback problems occurs in a corridor of closely 

spaced intersections with heavy traffic demand combined with insufficient downstream queue 

storage. Queue spillback can also occur due to the insufficient left turn bay length, which can 

interfere with the through phase traffic. In this research, the former type of queue spillback was 

addressed. The problem is described in Figure 11, where the westbound traffic at the upstream 

intersection is not able to move due to the downstream intersections queue storage overflow.  

 

Figure 11: Downstream storage queue spillback illustration. 

 

5.2 Queue Spillback Detection: Smaglik/Beaird Approach 

Queue spillback can be detected by using information collected from detectors and controller 

status. For the case illustrated in Figure 12, the stop bar detector for the upstream through phase 

would have a high occupancy while the corresponding phase is green. Simple logic could 
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characterize the traffic condition as one where queue spillback occurred and conclude that the 

downstream queue is interfering with the upstream intersections traffic flow.  

The queue spillback detection method used in this research to test the performance of the 

proposed architecture was developed by Smaglik and Beaird (Smaglik, 2006; Beaird, 2006). The 

method can be referred to as responsive queue spillback detection as it only detects a queue 

spillback when it occurs, and it cannot be applied to predict an upcoming queue spillback.  

According to this method, a queue spillback will be detected when a vehicle at any approach 

suffers delay during the green indication due to a downstream queue. In this method, a 10 second 

aggregation interval was used to determine the occupancy. The algorithm measured and 

averaged the headways using detector status for the latest 10 seconds of green time. From 

historic data, a threshold value of headway was determined and compared with the current 

cycle‟s headway. Flow was considered to be restricted if the current headway was greater than 

the threshold value and the vehicle presence was detected. For this research, the method was 

modified to accommodate smaller intervals, because 10 second intervals seemed too long for a 6 

ft detector. For a 6 ft stop bar detector, it is very likely that there will be a un-occupancy period 

between two vehicles, even during queue discharge. For normal flow during the green interval, 

the occupancy during green should be less than 100 percent, unless there is a flow restriction. 

Therefore, the threshold value of the occupancy used for the detection algorithm was 100 

percent. The advantage of using a shorter interval over a longer one is that the queue spillback 

can be detected earlier. However, the interval should not be so short that it detects a queue 

spillback which does not exist. This can occur especially at the beginning of the green when a 

vehicle waiting at the stop bar usually takes longer to move away from the detector.  

Detection Logic 

The detection logic proposed by the method was fairly simple to program in the microcontroller. 

In words, if the phase is green and the detection zone is occupied for 5 seconds there is a queue 

spillback from the downstream intersection, as stated below: 

If (Phase state = Green & Detector occupancy for 5 seconds = 100%)  

Queue Spillback Occurrence = True; 
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Else 

Queue Spillback Occurrence = False; 

Simulation Model  

To test whether the proposed architecture can successfully run the detection logic to detect the 

queue spillback, a simulation model of the two intersections, described in Chapter 3, was used. 

Two ASC/3 traffic controllers controlled the traffic at the two intersections. The model is shown 

in Figure 12, where both the intersections are labeled.  

 

Figure 12: VISSIM simulation model. 

 

The small blue rectangles represent 6 ft detectors placed at the stop bars. The numbers shown 

near the detectors are the phases that those detectors serve. The two stop bar detectors at the I-5 

off ramp intersection, shown in the circle, were used to detect the queue that backed up from the 

Ash Way intersection to block the intersection. Also, the signal status of phase 4 at the I-5 

intersection, one that the two detectors serve, was used to implement the detection logic stated 

above. There were two upstream traffic movements that contributed to the queue on westbound 

approach of the Ash Way intersection, and the input volumes for these two movements in the 

simulation were such that the queue spillback would occur with sufficient frequency to provide 

informative test results.  

Ash Way Intersection I-5 Off Ramp Intersection 
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Queue Spillback Detection Test 

For the test, the simulation was run for a one hour period and signal status, detector status, and 

queue length data were collected from the VISSIM output files. Ground truth queue spillback 

detection data were acquired using the detector status and signal status acquired from simulation 

output files. The queue spillback detection logic explained earlier in this section, was used to 

find the queue spillback occurrences. On the other hand, the detection logic was implemented in 

the microcontroller, where it detected queue spillback using information it acquired from the 

controller. For both cases, the time of detection was recorded to make a comparison, which is 

shown in Figure 13. Observations of when queue spillback actually occurred in the simulation 

were not used as the ground truth. The reason is that the object of this test is to observe the 

microcontroller‟s ability to detect an event using data it collects from the traffic controllers and 

compare this to the ability to detect this same event using the ideal simulation data.    

  

Figure 13: Queue spillback detection comparison.  

 

From the above figure, it can be seen that the microcontroller was able to correctly detect the 

queue spillback, except for two occasions. The microcontroller omitted detection at about 380 

seconds. However, it detected queue spillback at 597 seconds that was not detected when using 

the simulation-output. For the first case, the duration of the queue spillback was smaller than 5 

seconds; therefore it should not be a problem. For the second case, the microcontroller falsely 
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detected a queue spillback, which was actually during the beginning of green where the first 

vehicle waited for a little longer before starting to move. Furthermore, there tended to be small 

time gaps between the detection times resulting from the two queue spillback detection processes 

(one processing using the controller data and the other using the simulation data). This time gap 

was not significant in terms of the responsiveness of the feedback decision process. However, 

this time gap is subject to the individual controller response times and has the potential to 

increase with an increasing number of controllers in the system.   

5.4  Performance Measure  

Green Time Utilization (GTU) 

Green time utilization is an informative measure of performance for signalized intersections. It 

can be defined as the percent phase green time that serves the traffic. It measures the degree to 

which intersection capacity is utilized overall and can do this by individual phases. For example, 

a phase may have 30 seconds of green time but, on average, its corresponding detectors are 

occupied for a total of 10 seconds. For such a case, 20 seconds of green time would be better 

spent serving another conflicting phase with higher green utilization.  

In this research, a simple ratio of occupancy time verses total green was used. There were other 

performance measures that could be considered, for example, delay, cycle failure, queue length 

etc. However, green time utilization seemed to be the most relevant performance measure for 

addressing the queue spillback scenario. Green time redistribution on the downstream 

intersection, where the bottleneck and queue occur, was chosen as the control feedback measure, 

in addition to queue spillback detection. This is because the GTU of the phases give a clear 

indication of the quality of green distribution indicating which phases to cut short and which to 

extend. Furthermore, Lowri (1990) showed that GTU is closely related to the v/c ratio. As such, 

it can be used as an index of the unused capacity of the intersection. The relation is such that the 

higher the GTU value the less spare capacity exists.  

Calculation of GTU 

There are two basic ways to calculate the GTU: simple aggregation, and detector occupancy 

trends. In the first method, detector occupancy times are aggregated for the duration of the green. 
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In the second method, total green duration is subdivided into smaller time intervals and GTU is 

calculated at each subinterval. For the simplicity of calculation, the first method was applied in 

this research. However, the latter method is more informative, because of higher resolution in 

calculations, and is worth considering in future efforts.  

Tuly applied Equation 5-1 for calculating GTU. “It describes how the simple aggregation of 

green time utilization should be calculated using detector data for phase  . The numerator of this 

equation is the sum of times that the active phase detector is occupied, which is assumed to be 

the time that the phase is serving vehicles. The variable id  is „1‟ if the active phase detector is 

occupied and zero otherwise. The denominator is the sum of detector intervals, and should be 

equivalent to the phase green time” (Tuly, 2010). 
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Where 

  = Active phase, 

GU  = Green time utilization for , 

i = Interval of time during which the detector status does not change for  , 

T = Contiguous set of detector status time intervals for the G interval of , 

id  = Detector status for the   during detector interval i ( id = 1 if detector is on, zero 

otherwise), and 

it  = Time length of detector interval i during   (seconds) 

 

The GTU is most informative when each detector for a given phase has a separate input channel 

to the controller. In this case, the summation can be rearranged to sum occupancy times one for 

each lane controlled by the corresponding phase. By doing this, each vehicle‟s occupancy time is 

much more likely to be included and it would only be included once. 
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To estimate the GTU, data were collected from both microcontroller and the simulation for 30 

cycles. The calculation process was different for the two sources. In both cases, the calculations 

can be described by Equation 5-1. However, the microcontroller calculated GTU based on 

detector occupancy data collected from the controller using its detector logging function. In this 

case, detector occupancy was logged in 5 second intervals, so it  
= 5 seconds. Whereas, detector 

occupancy data collected from the simulation output files were available in 0.1 second intervals, 

so it = 0.1 seconds. The comparison of the phase 4 calculated values from the two sources (the 

bottleneck phase) and phase 5 (conflicting with phase 4) of the Ash Way intersection is shown in 

Figure 14.  

 

 

Figure 14: Comparison of estimated GTU for 5 seconds occupancy period. 

 

In the above figure, two lines represent the GTU of the phase calculated by the microcontroller 

and from the simulation-output based data. A vertex in a line represents the end of a 110 second 

cycle. It can be visually observed from the graph that the two lines are closely spaced indicating 

a small difference between the two estimates. However, there is clear bias where the 

microcontroller GTUs are almost always higher than the simulation-output GTU. This is because 
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the traffic controller logs the occupancy data in 0.5percent increments, which are always 

reported to the nearest integer value. However, there are some larger variations near 450 and 

1500 seconds, which could have resulted from a detector log at the end of a given cycle being 

received at the microcontroller at the beginning of the following cycle for one or more intervals.  

Two-tailed paired t-tests were conducted for both phase 4 and 5 to see whether the differences 

between the values from two sources were significant or not. The detailed test results were given 

in Appendix E. For both phases, p-values were less than the critical p level (0.05), which implies 

that the differences were statistically significant. However, these differences are likely 

insignificant in terms of engineering judgment. For example, assume the decision was to either 

reduce the green time of phase X or phase Y. Then the magnitude of a wrong decision is directly 

related to the GTU measurement error. In this test, the GTU measurements for phases 4 and 5 

had an average error of 2.6 percent. Assuming this error is generally applicable than an incorrect 

phase selection for reducing the green time would not be far off the mark. Even so, it is clear that 

the architecture would incrementally benefit from a more consistent source for detector 

occupancy data and the phase and detector state event log recommended in previous research 

would fill this role well (Smaglik, 2007). 

5.5  Feedback Decision Process 

The total green time in a cycle is divided among all the phases at an intersection, and thus, each 

phase competes for time to serve the corresponding traffic movements. If an adjustment is made 

to one of the phases, operations of the other phases will be affected. Therefore, a feedback 

decision made to solve a queue spillback problem should consider the impacts that adjustments 

to one phase will have on the other phases. Incorporating green time utilization will enable an 

engineer to monitor the impacts and to determine how well a phase is operating. While some 

phases may not experience problems, they may be operating close to the point where problems 

will result. GTU measurement for each phase will make it possible to foresee the impacts of 

phase plan and timing adjustments that comprise a control strategy.  

Redistribution of Green Time 

In this research, the redistribution of the green times among the phases of the problem 

intersection was used as a technique to mitigate queue spillback problem. The focus of this 
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method is to add more green time to the bottleneck-phase of the downstream intersection by 

taking green time away from other conflicting phases. Smaglik and Beaird‟s approach toward 

solving the queue spillback issue was to truncate the upstream phase that is facing the queue 

spillback problem by immediately gapping it out. This approach does not really solve the 

problem; rather it is an attempt to stop the queue from building up and blocking the intersection 

so that other conflicting phases can utilize the time. Therefore, in this research phase truncation 

was not adopted as a feedback measure to test.  

The technique applied in this research was to terminate the downstream phases conflicting the 

bottleneck-phase and increase the maximum green settings for the bottleneck-phase when a 

queue spillback was detected. In this way, the bottleneck-phase started earlier and lasted longer. 

Terminating a phase can be done in two ways: Max-out (maximum green timer expires), or Gap-

out (phase passage timer expires). To terminate a conflicting phase, the max-out technique was 

implemented. However, there is a benefit of using gap-out over max-out termination. Gap-out 

terminates the phase immediately, whereas max-out takes more time, because it involves 

changing a setting and waiting until a longer maximum green time expires. Typically, the benefit 

of max-out starts with the next cycle. To add more green time to the bottleneck-phase (phase 4 of 

the downstream intersection), other active conflicting phases were set to max-out earlier by 

resetting their respective maximum green settings. To resolve the problem in the earliest possible 

time, the microcontroller changed the maximum green times to the corresponding minimum 

green times. After the queue was cleared (typically in the next cycle), the microcontroller 

returned the maximum green to its normal setting. The benefit of maintaining the plans 

maximum green setting is that this can be implemented as a short-term control measure and the 

normal settings can be restored when the operations become normal.  

From the previous discussion, the feedback decision process can be clearly divided into several 

steps. 

1. The microcontroller detects queue spillback by the method explained in Section 5.2 

of this chapter.  

2. Microcontroller calculates GTU values to determine the uncoordinated phases with 

the most unused green that could be reallocated to the bottleneck-phase.  
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3. Microcontroller determines the uncoordinated phase from which to reallocate unused 

green. To determine the phases to terminate earlier, a threshold value of GTU was 

used. A phase was considered to have unused green time if its estimated GTU was 

below the specified threshold value. Tuly (2010) suggested a simple GTU threshold 

of 45 percent, which was used in this research.  

4. Microcontroller changes the maximum green times of the uncoordinated phases with 

GTU below the threshold value to have equal values with their respective minimum 

green times (for Ash Way intersection it was 5 seconds). This change goes into effect 

in the next cycle. This feedback measure does not affect the cycle start time or the 

coordination, and the implementation is a direct approach, because the NTCIP object 

phaseMaximum1 has both read and write data accessibility.  

To assess the feedback process, a simulation was run for 1 hour, and queue length data were 

collected for both a base condition and after implementing the feedback. The average queue 

length of the WB through movement at the Ash Way intersection reduced to 135 ft from 189 ft. 

This indicates that the feedback decision employed by the microcontroller was able to improve 

the situation for the WB through movement. For the conflicting movements, the queue lengths 

were increased, especially for the SB left turn movement the change was noticeable. The average 

queue length increased from 43 ft to 67 ft. For future research, a more balanced approach to 

setting max green times should be taken to lessen the adverse effects on the uncoordinated 

phases. 
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Chapter 6: Technology Transfer  

This chapter provides a brief description of the Dynamic C code setup and the NTCIP 

communication implementation in terms of dynamic objects and data communications. In 

addition to the broad description given in Chapter 2, this chapter accomplishes two objectives: i) 

describes how these elements were implemented in the proposed architecture to increase 

researcher awareness of issues associated with external logic traffic control systems monitoring 

and ii) facilitates future implementation of the proposed architecture as it stands with the Rabbit 

3000 microcontroller.  

6.1 Requesting Data and Using NTCIP 1202 

Requesting data and sending data to and from the traffic controller are a foundation for this 

research and are accomplished through “dynamic objects” and the NTCIP 1202 communication 

protocol. This report only describes the process followed for requesting data. Sending data uses 

similar resources, but also requires a description of how to interpret the dynamic object sent from 

the controller. The process followed for sending data is described elsewhere (DeVoe, 2009).  

The definitions and the process of building a dynamic object, and the communication protocols 

were described in Chapter 2. In this section, the data requesting process is documented by 

referring to specific lines in the microcontroller code. In addition to the signal and detector state 

information, detector volume and occupancy data logs were requested from the traffic controller 

for this research. The data requesting task requires the following steps:  

Step 1: Define a new dynamic object, by establishing a dynamic object number and then 

selecting the objects corresponding to the desired controller parameters by listing their 

corresponding OIDs,  

Step 2: Request data by referring to the desired dynamic object‟s “Dynamic Object Number.” 

The number is circled in Figure 15 (line 70), set as a constant in the dynamic object setup file, a 

Dynamic C executable file. 
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Figure 15: Locating Dynamic Object Number in Dynamic Object setup file. 

 

Step 3: In this step, the total number of parameters or objects in the dynamic object is set. This is 

the number of controller parameters that the user decides to include in the dynamic object 

(circled in Figure 16).  

 

Figure 16: Defining total number of objects and listing the OIDs. 

  

Step 4: List each of the OIDs corresponding to the traffic controller parameters as defined in 

SNMPv1202v107 (Case, 1996). The most commonly used OIDs are listed in the text file named 

(see Appendix F). The process is very simple, finding the appropriate OID from the OID list and 

copying it to the list, the top of which is shown in Figure 16. To add detector volume to the 

existing list of objects, add the OID for detector volume (1.3.6.1.4.1.1206.4.2.1.2.5.4.1.1) to the 

list (line 107 in Figure 16). The last digit represents the detector number. As a result, this OID 

will be used to retrieve the volume data of detector number 1. The sequence of the OIDs in the 

list is very important, because this order defines the structure of the data received from the traffic 

controllers. In the case of this research, the packet size was specified by the number of objects or 

parameters required to be collected from the traffic controllers.  
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Step 5: Create the dynamic object. The dynamic object setup file is compiled and executed in the 

Rabbit after specifying the desired traffic controller in the program, as shown on line 50 of 

Figure 17. Both the traffic controller and the Rabbit should be connected to the same Ethernet 

network while the program executes. The program must run one time for each traffic controller. 

Once a dynamic object is setup, it can be used throughout the runtime of the microcontroller.  

 

Figure 17: Changing the IP address before executing the setup file. 

 

Step 6: Store the dynamic object data. The dynamic object data structure in the 

“DYNAMIC_SIGNAL_CONTROL" library file is modified by adding a variable to store the 

value of the newly added object. For example, Figure 18 shows the variable array 

“detectorVolume[MAX_DETECTOR]” (line 177), which was defined to store the detector volume 

data. It is also important to note that this structure must list the variables in the same order as the 

corresponding OIDs given in the dynamic object (shown in Figure 16). 

 

Figure 18: Dynamic object data structure (“DYNAMIC_SIGNAL_CONTROL.Lib"). 
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6.2 Interfacing with Relevant Tasks 

The microcontroller executes many tasks and all of them share the same resources. To ensure 

accurate flow of the data in the program, proper correlation of resource use between the tasks is 

important. In this section, the term “task” refers to a single or a set of functions to perform an 

action. The interfacing between tasks was done by using global variables. To explain this, the 

queue spillback detection and control feedback tasks are used as illustrations (see Figure 19).  

Task Manager
(Main)

Traffic 

Controller IP

&

Feedback 

Decision

QS Detection

Status

Select Next Traffic 
Controller

Detect 
Spillback

Send Control 
Feedback

Controller IP

&

Feedback 

Decision

QS Detection 

Status

 

Figure 19: Collaboration diagram for queue spillback detection and feedback.  

 

The above figure shows the flow of data that regulates the order of execution of relevant tasks. 

The above figure illustrates tasks executed beginning with queue spillback detection and ending 

with sending the feedback decision to the relevant controller. The tasks are described in order as 

follows:  

1. Queue spillback was detected; a “QS Detection” message passes from the detect 

spillback task to the task manager. 

2. The task manager calls the send control feedback task with this message.  

3. The send control feedback task formulates a control decision and sends it back to the 

task manager in the form of a “Controller IP and Feedback Decision” message. The 

IP address contained in this message is that of the traffic controller(s) where the plan 

changes are needed.  

4. The task manager sends the feedback decision to the controller with the 

corresponding IP address. 



 

An External Logic Architecture for Implementing Traffic Signal System Control Strategies  55 

The above process is further illustrated in the example code given in Figure 20.  

 
Note: All comments are prefixed with the „// (double slash)‟ symbol in the code. 

Figure 20: Example source code illustrating interactions between tasks.  

 

In the above figure, there is the relevant portion of the task manager code (line 302 to 313) and 

two functions: Q_spillback (line 316 to 327) and tc_set_feedback (line 328 to 337). The 

Q_spillback function represents the detect spillback task shown in Figure19. The 

tc_set_feedback function represents the send control feedback task, also shown in Figure 19. 

Beginning at line 307, the task manager calls the Q_spillback function, which checks for queue 

spillback conditions (line 318 to 320). “_Q_spillback [phase]” (line 322) is a global variable 

array declared to contain the queue spillback detection state for each phase. Based on the check, 

“_Q_spillback [phase]” is changed to “ON” or “OFF” (lines 322 to 326). Back on line 308, if 
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“_Q_spillback [phase]” is true then the control decision is implemented by calling the 

tc_set_feedback function (line 310) and changes the max green setting of phase 4 to 5 seconds 

(line 334).  

6.3 Using Relevant Libraries and Variables 

The main program (referred to as “main”) is referred to in Figure 19 as the task manager and 

contains the instructions to initialize the communication and control the relevant tasks. It uses the 

following library files by using the compiler directive “#use” {library name}: 

 "DTC_GLOBAL_DEFS.LIB": includes global definitions of the variable types 

 “DYNAMIC_SIGNAL_CONTROL.LIB": includes tasks for communication and traffic 

operation monitoring 

 “NETWORK_TOPOGRAPHY.LIB": contains user defined variables and tasks for 

defining the traffic network 

 "dcrtcp.lib”: includes functions for networking (communication protocols) 

 "http.lib”: includes primary HTTP functionality, providing a website that shows the 

traffic network performance 

All of the library files should be located to the directory named “Lib” inside the Dynamic C 

installation directory. The first three library files were developed and/or modified by this project 

for research with traffic signal systems and the last two were built-in libraries that came with the 

Dynamic C software. The libraries were developed to serve specific objectives. As shown in 

Figure 21, the first library contains the global definitions of all data types used in other libraries. 

For example, a “Byte” data type was defined as an unsigned character (line 43). All seven types 

that were defined in the library are shown in the figure (line 41 to 47). To define a type, the 

Dynamic C keyword “typedef” is used. It basically renames a variable type.   
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Figure 21: Variable type definitions in "DTC_GLOBAL_DEFS.LIB." 

 

The second library contains the instructions for communication and traffic operations 

monitoring, and the third file contains the user defined variables for a traffic network. These user 

defined variable act as constants and some quantify restrictions regarding array sizes and loops in 

terms of the maximum number of intersections, phases, detectors, lanes, and controllers. As with 

the other libraries, these libraries contain documentation in the form of “comments.” However, in 

the case of the third library, the comments direct the user to make necessary modifications to 

change these restrictions. For example, the maximum number of phases were defined as a 

constant named “MAX_PHASE” and the value given to it was eight. If the user wants to work 

with sixteen phases, then this value should be changed to sixteen, and a program instruction 

checking for some conditions for all eight phases would run sixteen times instead of eight. The 

last two libraries are built-in libraries and contain the functions required for displaying 

information in the webpage accompanying the microcontroller.  

All of the functions in the library files are available for use from the main program. Also, the 

variables can be used from anywhere within the main program or inside the libraries if they are 

defined as global variables. This feature of global variables simplifies the code. However, using 

global variables should be avoided when unnecessary, because the code is easier to understand 

when the scope of its individual elements are limited. Also, a global variable can be changed by 

any part of the program, and any rules regarding its use can be easily broken or forgotten.  
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6.4 Using the User Interface (The Webpage) 

For the convenience of monitoring the network performance, a webpage was developed as part 

of this research. The functionalities were scoped to demonstrate webpage applications, leaving 

more detailed and rigorous development for future consideration. For only outputting 

information, the signal status of two intersections was displayed. For inputting information to the 

server from the webpage a link was provided to implement a control feedback decision. The task 

can be subdivided into two principal steps: building the webpage by using HTML language and 

linking the variables declared for displaying signal status with the microcontroller program.  

For the signal status display, one variable was declared for each phase. For example, in Figure 22 

“signal_11[15]” was used to display the phase one state for intersection one (see line 8). The 

number “15” in the square brackets means that the variable contains 15 elements, i.e., the 

variable basically represents a “string” (a Dynamic C data type) of 15 characters. The webpage 

updates the values of the variables at a certain rate and displays images that represent the 

appropriate signal status. The HTML and other image files were added in the main program (line 

17 to 21) by using “sspec_addxmemfile()” functions, which are defined in the “http.lib” library 

file. To add a signal status display of another intersection, similar variables should be added both 

in the global variable section (line 8 to 12) and in the main. The compiler directive “#ximport” 

(line 2 to 5) imports the HTML and other image files from the specific location on the computer 

hard drive to the server while the program executes.  

To learn more about exchanging information to a webpage, the user should refer to the example 

problems provided with the Dynamic C software. “Post.C” is such an example that can be found 

in the installation directory of the software. There are other examples in the directory that contain 

source codes with documentation, and these are executable programs.  
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Figure 22: Codes for displaying signal state on the webpage (main program).   

 

An HTML reference (or a “link”) named “feedback,” is also given on the webpage. This link 

works like a push button, and if pressed, it sends a command to the Rabbit to call the “feedback” 

function shown in Figure 23.  

 

 

Figure 23: Codes for inputting data to the Rabbit server from the webpage (main 

program). 

 

Simply as a demonstration, the function sets the phase 5 minimum green to 4 seconds from its 

initial value of 5 seconds (line 123). Similar control decisions can be implemented by changing 

the instruction on line 123. Although, the program was made self-sufficient to detect an 

operational problem and implement a control decision, this webpage functionality actually 
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facilitates human intervention, in the form of monitoring the traffic and controller operations and 

changing traffic signal control plans.  
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Chapter 7: Conclusion and Recommendations 

The main purpose of this research was to develop an improved and cost effective system for 

collecting data in real-time, monitoring signalized intersection performance, and facilitating the 

implementation of improved control logic external to the traffic controllers. This chapter 

summarizes the important achievements of this research related to the above mentioned 

objective. 

7.1 Synthesis of the Findings 

Based on the analysis conducted in this research, the following were concluded:  

 The proposed architecture is capable of extracting accurate data from one or more NTCIP 

compliant traffic controllers via a common Ethernet network. 

 The time taken by the microcontroller to read and process the information collected from 

a certain traffic controller, defined as the response time, depends on the number of traffic 

controllers in the system. For a system of one traffic controller, the response time is 250 

ms. For a system of two or more controllers, the controller response time varies between 

275-285 ms per controller.  

 A Dynamic C library file can help establish system definitions and network topography 

information. This information formalizes some relations between control decisions 

considered at different locations. 

 It is clear that the microcontroller‟s performance will degrade with each additional 

controller and this deterioration was quantified in terms of the data read cycle, which is 

the time transpired between two consecutive times the microcontroller receives data from 

a given traffic controller. 

 Traffic performance measures can be calculated by the microcontroller with acceptable 

accuracy using controller detector occupancy and volume logs. For a 5 second occupancy 

interval, the GTU calculated by the microcontroller varied about 1.5 percent from the 

actual measurements. Although this error can be positive or negative, the data that the 

microcontrollers estimate are biased high. 

 The architecture implements performance measurement and control strategy decisions 

effectively with multiple controllers. This was shown using a queue spillback scenario. 
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 A variety of control feedback strategies can be applied within the proposed architecture 

to improve the queue spillback condition. The green redistribution, as a feedback, 

improves the queue spillback scenario significantly by making acceptable performance 

sacrifice for some traffic movements in order to achieve acceptable performance at other 

traffic movements.  

7.2 Opportunities for Microcontroller Application 

Data collection and performance measurement for signalized intersections are receiving more 

attention day by day with the technological advancement in the field. The application of a 

microcontroller for this purpose was demonstrated in this research through the proposed 

architecture. However, there are many opportunities for an application of a microcontroller in 

this setting.  

Dual Resolution Performance Monitoring  

Typically, traffic operations and maintenance agencies do not have the resources to monitor 

traffic system performance of signalized arterials in the detail consistent with what a 

microcontroller can achieve. Therefore, there are very limited means to improve their operations. 

In addition, the proposed architecture would still be limited by communication bandwidth. It 

may be more practical to conduct performance monitoring of a signalized arterial with high 

resolution monitoring surrounding the problem area and low resolution elsewhere. Doing so 

would support key decisions at critical areas, while continuing basic monitoring at other 

locations to maintain the ability to change focus to these areas if conditions change. 

Excessive Stops Applied in Coordinated System Feedback 

In many instances, the purpose of traffic signal coordination is to improve the level of service of 

a road or a network of roads by minimizing overall delay or travel time and the number of stops. 

In some cases, this can be achieved by implementing an adaptive traffic control system. The 

principal benefit of an adaptive system is that it can be effectively used where variability and 

unpredictability in traffic demand results in excessive delay and stops that cannot be reasonably 

accommodated by updating coordinated signal timing parameters in a time-of-day fashion. 

Modifying and testing traffic control logic to be more adaptive requires many resources. To 
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address this, prototyping through the application of microcontrollers can streamline the 

development effort. This research provides an example of adaptive control in the context of 

queue spillback. When a queue spillback scenario is detected, the microcontroller determines a 

control strategy and employs it to mitigate the problem. However, the number of stops was not 

taken into account while implementing this strategy. Depending on the detection system, the 

existing adaptive logic could be readily changed to address the number of stops and tested in the 

laboratory and subsequently in the field.  

7.3 Next Steps in Research 

It was believed that signalized intersection systems may benefit from applying the architecture 

and techniques developed in this research. However, some issues and limitations were 

recognized that might be encountered while implementing this in the field. In an effort to resolve 

those issues, the following topics were identified for further research: 

 The proposed network of microcontroller and the traffic controllers was only tested in the 

lab. It needs to be tested in the field with the queue spillback detection logic and feedback 

strategies in order to develop a field ready instrument. Testing in the field might expose 

issues that were either overlooked or considered to have little impact in the lab. For 

example, the distance between intersections and field network connections might cause 

delays that could undermine the performance of the system.  

 Future research could improve data resolution and at the same time reduce data read 

cycles. One direction to pursue for achieving this is the ftp server style communication of 

data packets employed by Econolite. This introduces some security concerns and 

additional questions. One question is the data packet request frequencies suitable for real-

time performance monitoring and adaptive control. Another question is the potential of 

PCs to take the place of microcontrollers in the proposed architecture, at least in terms of 

performance monitoring. In this sense, they would act as a research grade central control 

computer. 

 Response time can be improved by implementing a faster microcontroller and rewriting 

the program in its corresponding software development environment. 



 

An External Logic Architecture for Implementing Traffic Signal System Control Strategies  64 

 There is room for refining the detection algorithm. For example, in the queue spillback 

detection algorithm a 5 second occupancy interval was used. This interval is too short for 

heavy vehicles, because of their large discharging detector occupancy time.  

 Other performance measures (e.g., delay and number of stops) and additional control 

feedback should be considered (e.g., changing cycle length, or offset).  

 Performance measurement and control feedback should more thoroughly consider the 

network topography to establish stronger and further reaching relationships and 

strengthen improvement strategies. 
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APPENDIX A: List of Functions in Traffic System Definition Library  

NETWORK_TOPOGRAPHY.LIB 

Function Number: 1 

Syntax: Byte NT_intx_phase(Byte node) 

Description: Defines the number of phases associated with each intersection, a node with a non-

zero phase is regarded as an intersection. 

Parameter1: Node number 

Return value: Number of phases in the given node/intersection 

 

Function Number: 2 

Syntax: Byte NT_link_from_node(Byte link) 

Description: For a given link number, this function returns the node from where it originated. 

Parameter1: Link number 

Return value: Origin node 

 

Function Number: 3 

Syntax: Byte NT_link_to_node(Byte link) 

Description: For a given link number, this function returns the destination node. 

Parameter1: Link number 

Return value: Destination node 

 

Function Number: 4 

Syntax: Byte NT_phase_from_link(Byte phase, Byte intx) 

Description: For a given phase number of an intersection, this function returns the link number 

where it comes from. 

Parameter1: Phase number 

Return value: Intersection number 

 

Function Number: 5 

Syntax: Byte NT_phase_to_link(char mvmnt, Byte phase, Byte intx) 
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Description: For a given phase number of an intersection, this function returns the link number to 

which the phase goes. 

Parameter1: Movement, 'L'= Left-turn, 'T'= Through, 'R'=Right-turn 

Parameter2: Phase number 

Return value: Intersection number 

 

Function Number: 6 

Syntax: Byte NT_phase_Upstream_intx(Byte phase, Byte intx) 

Description: For a given phase number of an intersection, this function returns the link number 

where it comes from. 

Parameter1: Phase number 

Parameter2: Intersection to which the phase belongs 

Return value: Origin Node 

 

Function Number: 7 

Syntax: Byte NT_phase_Downstream_intx(char mvmnt, Byte phase, Byte intx) 

Description: For a given movement and phase number of an intersection, this function returns the 

link number where it goes. 

Parameter1: Movement, 'L'= Left-turn, 'T'= Through, 'R'=Right-turn 

Parameter2: Phase number 

Parameter3: Intersection to which the phase belongs 

Return value: Origin Node 

 

Function Number: 8 

Syntax: Byte NT_offset_between_intx(Byte intx1, Byte intx2) 

Description: For a given phase number of an intersection, this function returns the link number 

where it comes from. 

Parameter1: Upstream intersection from where the traffic comes 

Parameter2: Downstream intersection to which the traffic moves 

Return value: Offset in seconds from intersection 1 to 2 

 



 

An External Logic Architecture for Implementing Traffic Signal System Control Strategies  69 

Function Number: 9 

Syntax: void NT_contributing_upstream_phases(Byte phase, Byte intx) 

Description: For a given phase of an intersection, this function computes the upstream 

contributing phases. 

Parameter1: Phase number 

Parameter2: Intersection to which the phase belongs 

Return value: None (stores the number of u/s contributing phases in global variable 

“_contributing_us_phase[3]”). 

 

Function Number: 10 

Syntax: void NT_movements_served(Byte phase, Byte intx) 

Description: For a given phase number of an intersection, this function computes the movements 

it serves. 

Parameter1: Phase number 

Parameter2: Intersection to which the phase belongs 

Return value: None  

 

Function Number: 11 

Syntax: Byte NT_number_lanes_served(Byte phase, Byte intx) 

Description: For a given phase number of an intersection, this function returns the number of 

lanes it serves. 

Parameter1: Phase number 

Parameter2: Intersection to which the phase belongs 

Return value: None 

 

Function Number: 12 

Syntax: void NT_lanes_served_phase(Byte phase, Byte intx) 

Description: For a given phase number of an intersection, this function computes the lanes being 

served by it. 

Parameter1: Phase number 

Parameter2: Intersection to which the phase belongs 
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Return value: None 

Function Number: 13 

Syntax: Byte NT_lane_mvmnt(Byte lane, Byte phase, Byte intx) 

Description: For a given lane number and phase of an intersection, this function returns a number 

that represents the movements being served by the lane. 

Parameter1: Lane number (starts from inside, inside most lane is number 1) 

Parameter2: Phase that serves the lane, it defines the approach of intersection 

Parameter3: Intersection to which the phase belongs 

Return value: Number representing the movement being served according to the Lane-

Movement Assignment Table described inside the function. 

 

Function Number: 14 

Syntax: void print_lane_mvmnts(Byte intx) 

Description: For a given intersection, this function prints the movements each lane serves. 

Parameter1: Intersection to which the phase belongs 

Return value: None. 

 

Function Number: 15 

Syntax: int NT_det_position(Byte det, Byte intx) 

Description: For a given detector number at a given intersection, this function returns the 

position of the detector, i.e., distance from the stop bar. 

Parameter1: Detector number 

Parameter2: Intersection to which the detector belongs 

Return value: None. 
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APPENDIX B: Comparison of Phase Maximum Green and Phase Passage 

Values 

Table 6: Phase Max Green Comparison for Data Reading Capability Test

 

Table 7: Phase Passage Comparison for Data Reading Capability Test
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APPENDIX C: Signal State Comparison of I5-Off ramp Intersection 

 

Figure 24: Comparison of signal status data (intersection 2). 
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APPENDIX D: Detector Status Comparisons 

 

Figure 25: Comparison of detector status (detector 5 of intersection 1). 

  

 

Figure 26: Comparison of detector status (detector 7 of intersection 1).  
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Figure 27: Comparison of detector status (detector 4 of intersection 2) 
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APPENDIX E: Paired t-Tests for GTU Comparison 

Table 8: Intersection 1 Phase 4 GTU Comparison (Paired t-Test) 

  Microcontroller Simulation-based 

Mean 47.40 44.73 
Variance 43.89 44.74 
Observations 30 30 
Hypothesized Mean Difference 0 

 df 29 
 t Stat 4.22 
 P(T<=t) two-tail 0.0002 
 t Critical two-tail 2.05   

 

Table 9: Intersection 1 Phase 5 GTU Comparison (Paired t-Test) 

  Microcontroller Simulation-based 

Mean 35.14 32.63 
Variance 68.98 58.03 
Observations 30 30 
Hypothesized Mean Difference 0 

 df 29 
 t Stat 8.19 
 P(T<=t) two-tail 5.00E-09 
 t Critical two-tail 2.05   

 

Table 10: Intersection 1 Phase 4 GTU Comparison (Paired t-Test with Hypothesized Mean 

Difference) 

  Microcontroller Simulation-based 

Mean 47.65 45.04 
Variance 43.53 43.35 
Observations 30 30 
Hypothesized Mean Difference 1.50 

 df 29 
 t Stat 1.71 
 P(T<=t) two-tail 0.10 
 t Critical two-tail 2.05   
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Table 11: Intersection 1 Phase 5 GTU Comparison (Paired t-Test with Hypothesized Mean 

Difference) 

  Microcontroller Simulation-based 

Mean 47.65 45.04 
Variance 43.53 43.35 
Observations 30 30 
Hypothesized Mean Difference 1.50 

 df 29 
 t Stat 1.71 
 P(T<=t) two-tail 0.10 
 t Critical two-tail 2.05   
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APPENDIX F: List of the Most Commonly Used OIDs  

1.3.6.1.4.1.1206.4.2.1.1               phase                                               

1.3.6.1.4.1.1206.4.2.1.1.1             maxPhases                                           

1.3.6.1.4.1.1206.4.2.1.1.2.1.1         phaseNumber                                         

1.3.6.1.4.1.1206.4.2.1.1.2.1.2         phaseWalk                                           

1.3.6.1.4.1.1206.4.2.1.1.2.1.3         phasePedestrianClear                                

1.3.6.1.4.1.1206.4.2.1.1.2.1.4         phaseMinimumGreen                                   

1.3.6.1.4.1.1206.4.2.1.1.2.1.5         phasePassage                                        

1.3.6.1.4.1.1206.4.2.1.1.2.1.6         phaseMaximum1                                       

1.3.6.1.4.1.1206.4.2.1.1.2.1.7         phaseMaximum2                                       

1.3.6.1.4.1.1206.4.2.1.1.2.1.8         phaseYellowChange                                   

1.3.6.1.4.1.1206.4.2.1.1.2.1.9         phaseRedClear                                        

1.3.6.1.4.1.1206.4.2.1.1.2.1.12        phaseMaximumInitial                                 

1.3.6.1.4.1.1206.4.2.1.1.2.1.13       phaseTimeBeforeReduction                            

1.3.6.1.4.1.1206.4.2.1.1.2.1.15       phaseTimeToReduce                                   

1.3.6.1.4.1.1206.4.2.1.1.2.1.17   phaseMinimumGap                                      

1.3.6.1.4.1.1206.4.2.1.1.2.1.19        phaseDynamicMaxStep                                 

1.3.6.1.4.1.1206.4.2.1.1.2.1.20   phaseStartup                                        

1.3.6.1.4.1.1206.4.2.1.1.2.1.21    phaseOptions                                        

1.3.6.1.4.1.1206.4.2.1.1.2.1.22    phaseRing                                           

1.3.6.1.4.1.1206.4.2.1.1.3            maxPhaseGroups                                      

1.3.6.1.4.1.1206.4.2.1.1.4             phaseStatusGroupTable                               

1.3.6.1.4.1.1206.4.2.1.1.4.1         phaseStatusGroupEntry                                

1.3.6.1.4.1.1206.4.2.1.1.4.1.1         phaseStatusGroupNumber                              

1.3.6.1.4.1.1206.4.2.1.1.4.1.2         phaseStatusGroupReds                                

1.3.6.1.4.1.1206.4.2.1.1.4.1.3         phaseStatusGroupYellows                             

1.3.6.1.4.1.1206.4.2.1.1.4.1.4         phaseStatusGroupGreens                              

1.3.6.1.4.1.1206.4.2.1.1.4.1.5         phaseStatusGroupDontWalks                           

1.3.6.1.4.1.1206.4.2.1.1.4.1.6        phaseStatusGroupPedClears                           

1.3.6.1.4.1.1206.4.2.1.1.4.1.7         phaseStatusGroupWalks                               

1.3.6.1.4.1.1206.4.2.1.1.4.1.8         phaseStatusGroupVehCalls                            

1.3.6.1.4.1.1206.4.2.1.1.4.1.9         phaseStatusGroupPedCalls                            

1.3.6.1.4.1.1206.4.2.1.1.4.1.10        phaseStatusGroupPhaseOns                            

1.3.6.1.4.1.1206.4.2.1.1.4.1.11        phaseStatusGroupPhaseNexts                          

1.3.6.1.4.1.1206.4.2.1.1.5               phaseControlGroupTable                               

1.3.6.1.4.1.1206.4.2.1.1.5.1           phaseControlGroupEntry                               

1.3.6.1.4.1.1206.4.2.1.1.5.1.1         phaseControlGroupNumber                             

1.3.6.1.4.1.1206.4.2.1.1.5.1.2         phaseControlGroupPhaseOmit                          

1.3.6.1.4.1.1206.4.2.1.1.5.1.3         phaseControlGroupPedOmit                            

1.3.6.1.4.1.1206.4.2.1.1.5.1.4         phaseControlGroupHold                               

1.3.6.1.4.1.1206.4.2.1.1.5.1.5         phaseControlGroupForceOff                           

1.3.6.1.4.1.1206.4.2.1.1.5.1.6         phaseControlGroupVehCall                            

1.3.6.1.4.1.1206.4.2.1.1.5.1.7         phaseControlGroupPedCall                            

1.3.6.1.4.1.1206.4.2.1.2                 detector                                             
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1.3.6.1.4.1.1206.4.2.1.2.1             maxVehicleDetectors                                

1.3.6.1.4.1.1206.4.2.1.2.2             vehicleDetectorTable                                

1.3.6.1.4.1.1206.4.2.1.2.2.1           vehicleDetectorEntry                                 

1.3.6.1.4.1.1206.4.2.1.2.2.1.1         vehicleDetectorNumber                               

1.3.6.1.4.1.1206.4.2.1.2.2.1.2         vehicleDetectorOptions                              

1.3.6.1.4.1.1206.4.2.1.2.2.1.4         vehicleDetectorCallPhase                            

1.3.6.1.4.1.1206.4.2.1.2.2.1.5         vehicleDetectorSwitchPhase                          

1.3.6.1.4.1.1206.4.2.1.2.2.1.6         vehicleDetectorDelay                                

1.3.6.1.4.1.1206.4.2.1.2.2.1.7         vehicleDetectorExtend                               

1.3.6.1.4.1.1206.4.2.1.2.2.1.8         vehicleDetectorQueueLimit                           

1.3.6.1.4.1.1206.4.2.1.2.2.1.9         vehicleDetectorNoActivity                           

1.3.6.1.4.1.1206.4.2.1.2.2.1.10        vehicleDetectorMaxPresence                          

1.3.6.1.4.1.1206.4.2.1.2.2.1.11        vehicleDetectorErraticCounts                        

1.3.6.1.4.1.1206.4.2.1.2.2.1.12        vehicleDetectorFailTime                             

1.3.6.1.4.1.1206.4.2.1.2.2.1.13        vehicleDetectorAlarms                               

1.3.6.1.4.1.1206.4.2.1.2.2.1.14        vehicleDetectorReportedAlarms                       

1.3.6.1.4.1.1206.4.2.1.2.2.1.15        vehicleDetectorReset                                

1.3.6.1.4.1.1206.4.2.1.2.3               maxVehicleDetectorStatusGroups                      

1.3.6.1.4.1.1206.4.2.1.2.4               vehicleDetectorStatusGroupTable                     

1.3.6.1.4.1.1206.4.2.1.2.4.1            vehicleDetectorStatusGroupEntry                     

1.3.6.1.4.1.1206.4.2.1.2.4.1.1         vehicleDetectorStatusGroupNumber                    

1.3.6.1.4.1.1206.4.2.1.2.4.1.2         vehicleDetectorStatusGroupActive                    

1.3.6.1.4.1.1206.4.2.1.2.4.1.3         vehicleDetectorStatusGroupAlarms                    

1.3.6.1.4.1.1206.4.2.1.2.5              volumeOccupancyReport                                

1.3.6.1.4.1.1206.4.2.1.2.5.1           volumeOccupancySequence                             

1.3.6.1.4.1.1206.4.2.1.2.5.2           volumeOccupancyPeriod                               

1.3.6.1.4.1.1206.4.2.1.2.5.3           activeVolumeOccupancyDetectors                      

1.3.6.1.4.1.1206.4.2.1.2.5.4           volumeOccupancyTable                                

1.3.6.1.4.1.1206.4.2.1.2.5.4.1         volumeOccupancyEntry                                

1.3.6.1.4.1.1206.4.2.1.2.5.4.1.1       detectorVolume                                      

1.3.6.1.4.1.1206.4.2.1.2.5.4.1.2       detectorOccupancy                                    

1.3.6.1.4.1.1206.4.2.1.2.6              maxPedestrianDetectors                              

1.3.6.1.4.1.1206.4.2.1.2.7              pedestrianDetectorTable                              

1.3.6.1.4.1.1206.4.2.1.2.7.1           pedestrianDetectorEntry                             

1.3.6.1.4.1.1206.4.2.1.2.7.1.1         pedestrianDetectorNumber                            

1.3.6.1.4.1.1206.4.2.1.2.7.1.2         pedestrianDetectorCallPhase                         

1.3.6.1.4.1.1206.4.2.1.2.7.1.3         pedestrianDetectorNoActivity                        

1.3.6.1.4.1.1206.4.2.1.2.7.1.4         pedestrianDetectorMaxPresence                       

1.3.6.1.4.1.1206.4.2.1.2.7.1.5         pedestrianDetectorErraticCounts                     

1.3.6.1.4.1.1206.4.2.1.2.7.1.6         pedestrianDetectorAlarms                            

1.3.6.1.4.1.1206.4.2.1.3.13             maxSpecialFunctionOutputs                           

1.3.6.1.4.1.1206.4.2.1.3.14             specialFunctionOutputTable                          

1.3.6.1.4.1.1206.4.2.1.3.14.1          specialFunctionOutputEntry                          

1.3.6.1.4.1.1206.4.2.1.3.14.1.1        specialFunctionOutputNumber                         

1.3.6.1.4.1.1206.4.2.1.3.14.1.3        specialFunctionOutputControl                        

1.3.6.1.4.1.1206.4.2.1.3.14.1.4        specialFunctionOutputStatus                         
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1.3.6.1.4.1.1206.4.2.1.4               coord                                               

1.3.6.1.4.1.1206.4.2.1.4.1             coordOperationalMode                                

1.3.6.1.4.1.1206.4.2.1.4.2             coordCorrectionMode                                 

1.3.6.1.4.1.1206.4.2.1.4.3             coordMaximumMode                                    

1.3.6.1.4.1.1206.4.2.1.4.4             coordForceMode                                      

1.3.6.1.4.1.1206.4.2.1.4.5             maxPatterns                                          

1.3.6.1.4.1.1206.4.2.1.4.6             patternTableType                                    

1.3.6.1.4.1.1206.4.2.1.4.7             patternTable                                         

1.3.6.1.4.1.1206.4.2.1.4.7.1           patternEntry                                        

1.3.6.1.4.1.1206.4.2.1.4.7.1.1         patternNumber                                       

1.3.6.1.4.1.1206.4.2.1.4.7.1.2         patternCycleTime                                    

1.3.6.1.4.1.1206.4.2.1.4.7.1.3         patternOffsetTime                                   

1.3.6.1.4.1.1206.4.2.1.4.7.1.4         patternSplitNumber                                  

1.3.6.1.4.1.1206.4.2.1.4.7.1.5         patternSequenceNumber                               

1.3.6.1.4.1.1206.4.2.1.4.8              maxSplits                                            

1.3.6.1.4.1.1206.4.2.1.4.9              splitTable                                          

1.3.6.1.4.1.1206.4.2.1.4.9.1           splitEntry                                           

1.3.6.1.4.1.1206.4.2.1.4.9.1.1         splitNumber                                         

1.3.6.1.4.1.1206.4.2.1.4.9.1.2         splitPhase                                           

1.3.6.1.4.1.1206.4.2.1.4.9.1.3         splitTime                                            

1.3.6.1.4.1.1206.4.2.1.4.9.1.4         splitMode                                            

1.3.6.1.4.1.1206.4.2.1.4.9.1.5         splitCoordPhase                                     

1.3.6.1.4.1.1206.4.2.1.4.10            coordPatternStatus                                  

1.3.6.1.4.1.1206.4.2.1.4.11            localFreeStatus                                     

1.3.6.1.4.1.1206.4.2.1.4.12            coordCycleStatus                                    

1.3.6.1.4.1.1206.4.2.1.4.13            coordSyncStatus                                     

1.3.6.1.4.1.1206.4.2.1.4.14            systemPatternControl      


